本课程来自 深度之眼,部分截图来自课程视频。
【第一章 线性代数】1.4矩阵的初等变换
在线LaTeX公式编辑器
任务详解:
主要介绍了矩阵的初等变换,逆矩阵的另外一种求法,矩阵的秩,线性方程组的解等知识点。
掌握目标:
1、了解由高斯消元法引入矩阵的初等变换
2、掌握矩阵的三种初等变换,了解行最简型矩阵,了解矩阵的标准型
3、掌握三种初等矩阵,掌握求逆的另一种方法
4、掌握可逆的又一个充要条件
1.矩阵的初等变换
引例:求解线性方程组
{
2
x
1
−
x
2
−
x
3
+
x
4
=
2
,
①
x
1
+
x
2
−
2
x
3
+
x
4
=
4
,
②
4
x
1
−
6
x
2
+
2
x
3
−
2
x
4
=
4
,
③
3
x
1
+
6
x
2
−
9
x
3
+
7
x
4
=
9.
④
(1)
\begin{cases}2x_{1}-x_{2}-x_{3}+x_{4}=2,①\\\\x_{1}+x_{2}-2x_{3}+x_{4}=4,②\\\\4x_{1}-6x_{2}+2x_{3}-2x_{4}=4,③\\\\3x_{1}+6x_{2}-9x_{3}+7x_{4}=9.④\end{cases} \tag{1}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧2x1−x2−x3+x4=2,①x1+x2−2x3+x4=4,②4x1−6x2+2x3−2x4=4,③3x1+6x2−9x3+7x4=9.④(1)
式(1)中①和②互换,③÷2得
{
x
1
+
x
2
−
2
x
3
+
x
4
=
4
,
①
2
x
1
−
x
2
−
x
4
+
x
4
=
2
,
②
2
x
1
−
3
x
2
+
x
3
−
x
4
=
2
,
③
3
x
1
+
6
x
2
−
9
x
3
+
7
x
4
=
9
,
④
(B1)
\begin{cases}x_{1}+x_{2}-2x_{3}+x_{4}=4,①\\\\2x_{1}-x_{2}-x_{4}+x_{4}=2,②\\\\2x_{1}-3x_{2}+x_{3}-x_{4}=2,③\\\\3x_{1}+6x_{2}-9x_{3}+7x_{4}=9,④\end{cases}\tag{B1}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+x2−2x3+x4=4,①2x1−x2−x4+x4=2,②2x1−3x2+x3−x4=2,③3x1+6x2−9x3+7x4=9,④(B1)
式(B1)中②-③,③-2①,4-3①得:
{
x
1
+
x
2
−
2
x
3
+
x
4
=
4
,
①
2
x
2
−
2
x
3
+
2
x
4
=
0
,
②
−
5
x
2
+
5
x
3
−
3
x
4
=
−
6
,
③
3
x
2
−
3
x
3
+
4
x
4
=
−
3
,
④
(B2)
\begin{cases}x_{1}+x_{2}-2x_{3}+x_{4}=4,①\\\\2x_{2}-2x_{3}+2x_{4}=0,②\\\\-5x_{2}+5x_{3}-3x_{4}=-6,③\\\\3x_{2}-3x_{3}+4x_{4}=-3,④\end{cases}\tag{B2}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+x2−2x3+x4=4,①2x2−2x3+2x4=0,②−5x2+5x3−3x4=−6,③3x2−3x3+4x4=−3,④(B2)
式(B2)中②÷2,③+5②,④-3②得:
{
x
1
+
x
2
−
2
x
3
+
x
4
=
4
,
①
x
2
−
x
3
+
x
4
=
0
②
2
x
4
=
−
6
③
x
4
=
−
3
④
(B3)
\begin{cases}x_{1}+x_{2}-2x_{3}+x_{4}=4,①\\\\x_{2}-x_{3}+x_{4}=0②\\\\ 2x_{4}=-6③\\\ x_{4}=-3④\end{cases}\tag{B3}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+x2−2x3+x4=4,①x2−x3+x4=0②2x4=−6③ x4=−3④(B3)
式(B3)中③和④互换,④-2③得:
{
x
1
+
x
2
−
2
x
3
+
x
4
=
4
,
①
x
2
−
x
3
+
x
4
=
0
②
x
4
=
−
3
③
0
=
0
④
(B4)
\begin{cases}x_{1}+x_{2}-2x_{3}+x_{4}=4,①\\\\x_{2}-x_{3}+x_{4}=0②\\\\ x_{4}=-3③\\\ 0=0④\end{cases}\tag{B4}
⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧x1+x2−2x3+x4=4,①x2−x3+x4=0②x4=−3③ 0=0④(B4)
以上例子实际上是把线性方程组的系数,连带常数项(等号右边的数字)看做是一个矩阵(行话叫:增广矩阵),然后对这个增广矩阵做了一系列的变化,最后可以判断方程组的解的形态。
定义1
下面三种变换称为矩阵的初等行变换:
(i)对调两行(对调i,j两行,记作
r
i
↔
r
j
r_i\leftrightarrow r_j
ri↔rj;
(ii)以数k≠0乘某一行中的所有元素(第i行乘k,记作
r
i
×
k
r_i×k
ri×k);
(iii)把某一行所有元素的k倍加到另一行对应的元素上去(第j行的k倍加到第i行上,记作
r
i
+
k
r
j
r_i+kr_j
ri+krj).
把定义中的“行”换成“列”,即得矩阵的初等列变换的定义(所用记号是把“r”换成“c”).
矩阵的初等行变换与初等列变换,统称初等变换。
注意:这里的可逆是操作可逆,和逆矩阵不一样。
显然,三种初等变换都是可逆的,且其逆变换是同一类型的初等变换;变换
r
i
↔
r
j
r_i\leftrightarrow r_j
ri↔rj的逆变换就是其本身;变换
r
i
×
k
r_i×k
ri×k的逆变换为
r
i
×
(
1
k
)
r_i×(\frac{1}{k})
ri×(k1)(或记作
r
i
÷
k
r_i÷k
ri÷k;变换
r
i
+
k
r
j
r_i+kr_j
ri+krj的逆变换为
r
i
+
(
−
k
)
r
j
r_i+(-k)r_j
ri+(−k)rj,(或记作
r
i
−
k
r
j
r_i-kr_j
ri−krj)。
如果矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作
A
∼
r
B
A\overset{r}{\sim}B
A∼rB;如果矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作
A
∼
c
B
A\overset{c}{\sim}B
A∼cB;如果矩阵A经有限次初等变换变成矩阵B,就称矩阵A与B等价,记作A~B.
矩阵之间的等价关系具有下列性质:
(i)反身性:A~A;
(ii)对称性:若A~ B,则B~A;
(iii)传递性:若A~ B,B~ C,则A~C.
把引例中的方程系数用矩阵表示,然后用矩阵初等变化来做:
行阶梯形矩阵B5还称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且这些非零元所在的列的其他元素都为0。
用归纳法不难证明(这里不证):对于住何矩阵
A
m
×
n
A_{m×n}
Am×n,总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵。
利用初等行变换,把一个矩阵化为行阶梯形矩阵和行最简形矩阵,是一种很重要的运算。由引例可知,要解线性方程组只需把增广矩阵化为行最简形矩阵。
由行最简形矩阵B5,即可写出方程组的解(2),反之,由方程组的解(2)也可写出矩阵B5。由此可猜想到一个矩阵的行最简形矩阵是惟一确定的(行阶梯形矩阵中非零行的行数也是惟一确定的).
对行最简形矩阵再施以初等列变换,可变成一种形状更简单的矩阵,称为标准形。例如:
矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.
对于m×n矩阵A,总可经过初等变换(行变换和列变换,只用其中一种是做不到标准形的)把它化为标准形:
此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A等价的矩阵组成一个集合,标准形F是这个集合中形状最简单的矩阵.
定理1
设A与B为m×n矩阵,那么:
(i)
A
∼
r
B
A\overset{r}{\sim}B
A∼rB的充分必要条件是存在m阶可逆矩阵P,使PA=B;
(ii)
A
∼
c
B
A\overset{c}{\sim}B
A∼cB的充分必要条件是存在n阶可逆矩阵Q,使AQ=B;
(ii)
A
∼
B
A\sim B
A∼B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B.
三种初等矩阵(对应三种初等变换),矩阵的本质就在于此:矩阵就是用来做变换的。
初等变换中的交换两列,对应的矩阵就是下面的矩阵;
以数k≠0乘某一行中的所有元素,对应的初等矩阵是下面的矩阵;
把某一行所有元素的k倍加到另一行对应的元素上去,对应的初等矩阵是下面的初等矩阵。
性质1:(人话版:)初等行变换,左边乘对应初等矩阵,初等列变换,右边乘对应初等矩阵。
(原版)设A是一个m×n矩阵,对A施行一次初等行变换,相当于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵.
性质2方阵A可逆的充分必要条件是存在有限个初等矩阵
P
1
,
P
2
…
,
P
i
,
P_1,P_2…,P_i,
P1,P2…,Pi,使
A
=
P
1
P
2
…
P
i
A=P_1P_2…P_i
A=P1P2…Pi
推论:方阵A可逆的充分必要条件是:
A
∼
r
E
A\overset{r}{\sim}E
A∼rE或者
A
∼
c
E
A\overset{c}{\sim}E
A∼cE
证明:
先证明必要条件,就是
A
∼
r
E
A\overset{r}{\sim}E
A∼rE可以推出A可逆
因为:对于矩阵A,总可经过初等变换(行变换和列变换,只用其中一种是做不到标准形的)把它化为标准形
所以
A
=
P
1
P
2
.
.
.
P
l
A=P_1P_2...P_l
A=P1P2...Pl(这里E为1,可以省略),其中
P
1
P
2
.
.
.
P
l
P_1P_2...P_l
P1P2...Pl是初等矩阵,每一个初等矩阵都可逆
再根据
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB|=|A||B|
∣AB∣=∣A∣∣B∣,上式可以写为
∣
A
∣
=
∣
P
1
∣
∣
P
2
∣
.
.
.
∣
P
l
∣
|A|=|P_1||P_2|...|P_l|
∣A∣=∣P1∣∣P2∣...∣Pl∣,由于初等矩阵对应的行列式
∣
P
1
∣
∣
P
2
∣
.
.
.
∣
P
l
∣
|P_1||P_2|...|P_l|
∣P1∣∣P2∣...∣Pl∣都不为0,所以
∣
A
∣
≠
0
|A|\neq0
∣A∣=0,A可逆;
再证明充分条件,
首先,A可以用初等矩阵变换得来,写为:
A
=
P
1
P
2
.
.
.
P
m
F
P
m
+
1
.
.
.
P
l
A=P_1P_2...P_mFP_{m+1}...P_l
A=P1P2...PmFPm+1...Pl,其中F为A的标准形,F左边是若干个初等行变换,右边是若干个初等列变换。F的长相应该是下面这个(不过应该是n*n的方阵,偷懒用上面的图)
由于A可逆,所以
∣
A
∣
≠
0
|A|\neq0
∣A∣=0,因此
∣
P
1
∣
∣
P
2
∣
.
.
.
∣
P
m
∣
F
∣
∣
P
m
+
1
∣
.
.
.
∣
P
l
∣
≠
0
|P_1||P_2|...|P_m|F||P_{m+1}|...|P_l|\neq 0
∣P1∣∣P2∣...∣Pm∣F∣∣Pm+1∣...∣Pl∣=0,由于初等矩阵可逆,所以他们各自的行列式都不为0,所以可知:
∣
F
∣
≠
0
|F|\neq 0
∣F∣=0
根据行列式的计算可知|F|的计算是对角线上的元素相乘得来,要使得
∣
F
∣
≠
0
|F|\neq 0
∣F∣=0,则对角线上不能为0,
E
r
E_r
Er是都为1的,所以r=n,即
E
r
E_r
Er就是一个单位矩阵。
2.逆矩阵的另外一种求法
这么费劲证明上面的东西就是要做这个非常重要事情,因为原来的求逆矩阵的方法太太太麻烦了,这里用上面的定理和推论就可以用比较简单初等变换来求一个逆矩阵,直接看例子吧。
设
A
=
[
0
−
2
1
3
0
−
2
−
2
3
0
]
A=\begin{bmatrix} 0&-2 &1 \\ 3& 0&-2 \\ -2 & 3 & 0 \end{bmatrix}
A=⎣⎡03−2−2031−20⎦⎤,证明A可逆,并求出
A
−
1
A^{-1}
A−1
(
A
,
E
)
=
[
0
−
2
1
1
0
0
3
0
−
2
0
1
0
−
2
3
0
0
0
1
]
(A,E)=\begin{bmatrix} 0&-2 &1&1&0&0 \\ 3& 0&-2 &0&1&0\\ -2 & 3 & 0&0&0&1 \end{bmatrix}
(A,E)=⎣⎡03−2−2031−20100010001⎦⎤
因
A
∼
r
E
A\overset{r}{\sim}E
A∼rE,故A可逆,且
A
−
1
=
[
6
3
4
4
2
3
9
4
6
]
A^{-1}=\begin{bmatrix} 6&3 &4 \\ 4& 2&3 \\ 9 & 4 & 6 \end{bmatrix}
A−1=⎣⎡649324436⎦⎤
这个的原理大概是这样的,先把A和E摆一起,(A,E),然后对这个东西做初等行变换,就是要在左边乘上
P
1
P
2...
P
l
P_1P2...P_l
P1P2...Pl,把
P
1
P
2...
P
l
P_1P2...P_l
P1P2...Pl记为P,则就变成:P(A,E),经过变化后,(A,E)变成了(E,Q),也就是:
P
(
A
,
E
)
=
(
E
,
Q
)
P(A,E)=(E,Q)
P(A,E)=(E,Q)
也就是:
P
A
=
E
,
P
E
=
Q
PA=E,PE=Q
PA=E,PE=Q
由PA=E得出
P
=
A
−
1
P=A^{-1}
P=A−1
PE=Q中单位矩阵E可以忽略,P=Q,结合上面就是:
Q
=
A
−
1
Q=A^{-1}
Q=A−1,也就是Q为A的逆矩阵。