概率论:3.3期望与方差


本课程来自 深度之眼,部分截图来自课程视频。
【第三章 概率论】3.3期望与方差
在线LaTeX公式编辑器

任务详解:

这节课主要介绍了期望与方差,协方差,矩估计等知识点。
掌握目标:
1、掌握期望和方差的意义,以及常用离散或连续分布期望方差的计算
2、掌握期望和方差的性质
3、掌握协方差,相关系数,协方差矩阵

1.期望与方差

期望

连续型(求积分):
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx
离散型(求和):
E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=k=1xkpk
下面来看几个典型密度函数的期望:

1、均匀分布:

f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases}\cfrac{1}{b-a},a<x<b\\0,\quad 其他\end{cases} f(x)=ba1,a<x<b0,
∫ a b 1 b − a x d x = 1 b − a 1 2 x 2 ∣ a b = 1 b − a 1 2 ( b 2 − a 2 ) = a + b 2 \int_a^b\frac{1}{b-a}xdx=\frac{1}{b-a}\frac{1}{2}x^2\bigg |_a^b=\frac{1}{b-a}\frac{1}{2}(b^2-a^2)=\frac{a+b}{2} abba1xdx=ba121x2ab=ba121(b2a2)=2a+b

2、指数分布

f ( x ) = { 1 θ e − x / θ 0 , 其 他 f(x)=\begin{cases}\cfrac{1}{\theta}e^{-x/\theta}\\0,\quad 其他\end{cases} f(x)=θ1ex/θ0,
∫ 0 + ∞ 1 θ e − x / θ ⋅ x d x \int_0^{+\infty}\cfrac{1}{\theta}e^{-x/\theta}\cdot xdx 0+θ1ex/θxdx
用换元法:
= − ∫ 0 + ∞ x d e − x / θ =-\int_0^{+\infty}xde^{-x/\theta} =0+xdex/θ
用分部积分:
− [ e − x / θ x ∣ 0 + ∞ − ∫ 0 + ∞ e − x / θ d x ] -[e^{-x/\theta}x\bigg |_0^{+\infty}-\int_0^{+\infty}e^{-x/\theta}dx] [ex/θx0+0+ex/θdx]
第一项根据洛必达法则等于0,则第二项:
= ∫ 0 + ∞ e − x / θ d x = ( − θ e − x / θ ) 0 + ∞ = 0 − ( − θ e 0 ) = θ =\int_0^{+\infty}e^{-x/\theta}dx=(-\theta e^{-x/\theta})_0^{+\infty}=0-(-\theta e^0)=\theta =0+ex/θdx=(θex/θ)0+=0(θe0)=θ

3、搞屎分布

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , − ∞ < x < ∞ f(x)=\cfrac{1}{\sqrt{2\pi}\sigma}e^{-\cfrac{(x-\mu)^2}{2\sigma^2}},-\infty<x<\infty f(x)=2π σ1e2σ2(xμ)2,<x<
期望为 μ \mu μ
下面看几个离散函数的期望:

1.0-1分布

X01
pk1-pp

根据定义求期望::
E ( X ) = ∑ k = 1 ∞ x k p k = 0 ( 1 − p ) + 1 × p = p E(X)=\sum_{k=1}^{\infty}x_kp_k=0(1-p)+1×p=p E(X)=k=1xkpk=0(1p)+1×p=p

2.伯努利(二项)分布

P { X = k } = ( n k ) p k q n − k , k = 0 , 1 , 2 , ⋯   , n P\{X=k\}=\binom{n}{k}p^kq^{n-k},k=0,1,2,\cdots,n P{X=k}=(kn)pkqnk,k=0,1,2,,n
根据定义求期望:
E ( X ) = ∑ k = 0 n x k p k = k ( n k ) p k q n − k E(X)=\sum_{k=0}^{n}x_kp_k=k\binom{n}{k}p^kq^{n-k} E(X)=k=0nxkpk=k(kn)pkqnk
---------------------------------------------------------割你没商量1------------------------------------------------------
二项分布的 ( n k ) = n ! k ! ( n − k ) ! \binom{n}{k}=\cfrac{n!}{k!(n-k)!} (kn)=k!(nk)!n!
k ( n k ) = k n ! k ! ( n − k ) ! = n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! = n ( n − 1 k − 1 ) k\binom{n}{k}=k\frac{n!}{k!(n-k)!}=\frac{n(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1} k(kn)=kk!(nk)!n!=(k1)!(nk)!n(n1)!=n(k1n1)
---------------------------------------------------------割你没商量1------------------------------------------------------
E ( X ) = ∑ k = 1 n n ( n − 1 k − 1 ) p p k − 1 q n − k = n p ∑ k = 1 n ( n − 1 k − 1 ) p k − 1 q n − k E(X)=\sum_{k=1}^{n}n\binom{n-1}{k-1}pp^{k-1}q^{n-k}=np\sum_{k=1}^{n}\binom{n-1}{k-1}p^{k-1}q^{n-k} E(X)=k=1nn(k1n1)ppk1qnk=npk=1n(k1n1)pk1qnk
k ˉ = k − 1 \bar{k}=k-1 kˉ=k1,则有:
E ( X ) = n p ∑ k ˉ = 0 n − 1 ( n − 1 k ˉ ) p k ˉ q ( n − 1 ) − k ˉ E(X)=np\sum_{\bar{k}=0}^{n-1}\binom{n-1}{\bar{k}}p^{\bar{k}}q^{(n-1)-\bar{k}} E(X)=npkˉ=0n1(kˉn1)pkˉq(n1)kˉ
用什么符号来表示公式中的变量是无所谓的,把 k ˉ \bar{k} kˉ换成k
E ( X ) = n p ∑ k = 0 n − 1 ( n − 1 k ) p k q ( n − 1 ) − k E(X)=np\sum_{k=0}^{n-1}\binom{n-1}{k}p^{k}q^{(n-1)-k} E(X)=npk=0n1(kn1)pkq(n1)k
求和部分实际上是 ( p + q ) n − 1 (p+q)^{n-1} (p+q)n1二项式展开,且p+q=1,故:
E ( X ) = n p ( p + q ) n − 1 = n p E(X)=np(p+q)^{n-1}=np E(X)=np(p+q)n1=np

3.泊松分布

P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯   , λ > 0 P\{X=k\}=\frac{\lambda^ke^{-\lambda}}{k!},k=0,1,2,\cdots,\lambda>0 P{X=k}=k!λkeλ,k=0,1,2,,λ>0
根据定义求期望:
E ( X ) = ∑ k = 0 + ∞ x k p k = ∑ k = 0 + ∞ k λ k e − λ k ! E(X)=\sum_{k=0}^{+\infty}x_kp_k=\sum_{k=0}^{+\infty}k\frac{\lambda^ke^{-\lambda}}{k!} E(X)=k=0+xkpk=k=0+kk!λkeλ
由于k=0这项是0,所以从1开始算:
E ( X ) = ∑ k = 1 + ∞ λ k e − λ ( k − 1 ) ! E(X)=\sum_{k=1}^{+\infty}\frac{\lambda^ke^{-\lambda}}{(k-1)!} E(X)=k=1+(k1)!λkeλ
k ˉ = k − 1 \bar{k}=k-1 kˉ=k1,则有:
E ( X ) = ∑ k ˉ = 0 + ∞ λ k ˉ + 1 e − λ k ˉ ! = λ ∑ k ˉ = 0 + ∞ λ k ˉ e − λ k ˉ ! E(X)=\sum_{\bar{k}=0}^{+\infty}\frac{\lambda^{\bar{k}+1}e^{-\lambda}}{\bar{k}!}=\lambda\sum_{\bar{k}=0}^{+\infty}\frac{\lambda^{\bar{k}}e^{-\lambda}}{\bar{k}!} E(X)=kˉ=0+kˉ!λkˉ+1eλ=λkˉ=0+kˉ!λkˉeλ
用什么符号来表示公式中的变量是无所谓的,把 k ˉ \bar{k} kˉ换成k
E ( X ) = λ ∑ k = 0 + ∞ λ k e − λ k ! E(X)=\lambda\sum_{k=0}^{+\infty}\frac{\lambda^{k}e^{-\lambda}}{k!} E(X)=λk=0+k!λkeλ
求和部分根据上一节的泊松分布可知,是等于1的。
E ( X ) = λ E(X)=\lambda E(X)=λ

期望的性质

1°设 C C C是常数,则有 E ( C ) = C E(C)=C E(C)=C.
2°设 X X X是一个随机变量, C C C是常数,则有
E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X).
3°设 X , Y X,Y XY是两个随机变量,则有
E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y).
这一性质可以推广到任意有限个随机变量之和的情况.
4°设 X , Y X,Y XY相互独立的随机变量,则有
E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y).
这一性质可以推广到任意有限个相互独立的随机变量之积的情况.

方差

方差的公式

说人话:每一个样本到期望的距离的平方
E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2}
来度量随机变量X与其均值 E ( X ) E(X) E(X)的偏离程度.
定义 X X X是一个随机恋量,若 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2}在在,则称 E { [ X − E ( X ) ] 2 } E\{[X-E(X)]^2\} E{[XE(X)]2} X X X的方差,记为 D ( X ) D(X) D(X) V a r ( X ) Var(X) Var(X),即
D ( X ) = V a r ( X ) = E { [ X − E ( X ) ] 2 } D(X)=Var(X)=E\{[X-E(X)]^2\} D(X)=Var(X)=E{[XE(X)]2}
在应用上还引入量 s q r t D ( X ) = sqrt{D(X)=} sqrtD(X)=,记为 σ ( X ) \sigma(X) σ(X),称为标准差均方差
对于离散变量,方差计算公式为:
D ( X ) = ∑ k = 1 ∞ [ x k − E ( X ) ] 2 p k D(X)=\sum_{k=1}^\infty[x_k-E(X)]^2p_k D(X)=k=1[xkE(X)]2pk
如果把 ∑ k = 1 ∞ [ x k − E ( X ) ] 2 \sum_{k=1}^\infty[x_k-E(X)]^2 k=1[xkE(X)]2看做一个随机变量,则 D ( X ) D(X) D(X)实际上可以看做是求期望。
对于连续变量,方差计算公式为:
D ( X ) = ∫ − ∞ + ∞ [ x k − E ( X ) ] 2 f ( x ) d x D(X)=\int_{-\infty}^{+\infty}[x_k-E(X)]^2f(x)dx D(X)=+[xkE(X)]2f(x)dx
看方差公式可以知道,欲求方差先求期望,貌似好麻烦,来看看怎么简化:
D ( X ) = E { [ X − E ( X ) ] 2 } = E { X 2 − 2 X E ( X ) + [ E ( X ) ] 2 } D(X)=E\{[X-E(X)]^2\}=E\{X^2-2XE(X)+[E(X)]^2\} D(X)=E{[XE(X)]2}=E{X22XE(X)+[E(X)]2}
根据期望的性质:
D ( X ) = E ( X 2 ) − 2 E ( X E ( X ) ) + E ( [ E ( X ) ] 2 ) D(X)=E(X^2)-2E(XE(X))+E([E(X)]^2) D(X)=E(X2)2E(XE(X))+E([E(X)]2)
---------------------------------------------------------割你没商量2------------------------------------------------------
2 E ( X E ( X ) ) 2E(XE(X)) 2E(XE(X)) E ( X ) E(X) E(X)是一个常数,所以根据期望的性质3°可以放到外面: 2 E ( X ) E ( X ) 2E(X)E(X) 2E(X)E(X)
E ( [ E ( X ) ] 2 ) E([E(X)]^2) E([E(X)]2) E ( X ) E(X) E(X)是一个常数,常数的期望就是它自己: [ E ( X ) ] 2 [E(X)]^2 [E(X)]2
---------------------------------------------------------割你没商量2------------------------------------------------------
D ( X ) = E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( X ) ] 2 = E ( X 2 ) − 2 [ E ( X ) ] 2 + [ E ( X ) ] 2 = E ( X 2 ) − [ E ( X ) ] 2 \begin{aligned}D(X)=&E(X^2)-2E(X)E(X)+[E(X)]^2\\ =&E(X^2)-2[E(X)]^2+[E(X)]^2\\ =&E(X^2)-[E(X)]^2\end{aligned} D(X)===E(X2)2E(X)E(X)+[E(X)]2E(X2)2[E(X)]2+[E(X)]2E(X2)[E(X)]2

常见分布的方差

---------------------------------------------------------割你没商量3------------------------------------------------------
例3泊松分布设随机变量 X ∼ π ( λ ) X\sim\pi(\lambda) Xπ(λ),求 D ( X ) D(X) D(X).
随机变量X的分布律为
P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯   , λ > 0 P\{X=k\}=\frac{\lambda^ke^{-\lambda}}{k!},k=0,1,2,\cdots,\lambda>0 P{X=k}=k!λkeλ,k=0,1,2,,λ>0
这个是泊松分布,上面算过,其 E ( X ) = λ E(X)=\lambda E(X)=λ,而
E ( X 2 ) = ∑ k = 0 ∞ k 2 λ k e − λ k ! = ∑ k = 1 ∞ k λ k e − λ ( k − 1 ) ! = ∑ k = 1 ∞ ( k − 1 + 1 ) λ k e − λ ( k − 1 ) ! = ∑ k = 1 ∞ ( k − 1 ) λ k e − λ ( k − 1 ) ! + ∑ k = 1 ∞ λ k e − λ ( k − 1 ) ! \begin{aligned}E(X^2)=&\sum_{k=0}^\infty k^2\frac{\lambda^ke^{-\lambda}}{k!}=\sum_{k=1}^\infty k\frac{\lambda^ke^{-\lambda}}{(k-1)!}\\ =&\sum_{k=1}^\infty (k-1+1)\frac{\lambda^ke^{-\lambda}}{(k-1)!}\\ =&\sum_{k=1}^\infty (k-1)\frac{\lambda^ke^{-\lambda}}{(k-1)!}+\sum_{k=1}^\infty \frac{\lambda^ke^{-\lambda}}{(k-1)!} \end{aligned} E(X2)===k=0k2k!λkeλ=k=1k(k1)!λkeλk=1(k1+1)(k1)!λkeλk=1(k1)(k1)!λkeλ+k=1(k1)!λkeλ
后面一项把一个 λ \lambda λ提出来, e − λ e^{-\lambda} eλ和k无关,也可以提出来,然后根据泊松分布计算过的,最后等于 λ \lambda λ
∑ k = 1 ∞ λ k e − λ ( k − 1 ) ! = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = λ \sum_{k=1}^\infty \frac{\lambda^ke^{-\lambda}}{(k-1)!}=\lambda e^{-\lambda}\sum_{k=1}^\infty \frac{\lambda^{k-1}}{(k-1)!}=\lambda k=1(k1)!λkeλ=λeλk=1(k1)!λk1=λ
前面一项,可以把(k-1)约掉一项,然后变成:
∑ k = 1 ∞ ( k − 1 ) λ k e − λ ( k − 1 ) ! = ∑ k = 2 ∞ λ k e − λ ( k − 2 ) ! \sum_{k=1}^\infty (k-1)\frac{\lambda^ke^{-\lambda}}{(k-1)!}=\sum_{k=2}^\infty \frac{\lambda^ke^{-\lambda}}{(k-2)!} k=1(k1)(k1)!λkeλ=k=2(k2)!λkeλ
把一个 λ 2 \lambda^2 λ2提出来, e − λ e^{-\lambda} eλ和k无关,也可以提出来:
= λ 2 e − λ ∑ k = 2 ∞ λ k − 2 ( k − 2 ) ! =\lambda^2e^{-\lambda}\sum_{k=2}^\infty \frac{\lambda^{k-2}}{(k-2)!} =λ2eλk=2(k2)!λk2
k ˉ = k − 2 \bar{k}=k-2 kˉ=k2
= λ 2 e − λ ∑ k ˉ = 0 ∞ λ k ˉ k ˉ ! = λ 2 e − λ e λ = λ 2 =\lambda^2e^{-\lambda}\sum_{\bar{k}=0}^\infty \frac{\lambda^{\bar{k}}}{\bar{k}!}=\lambda^2e^{-\lambda}e^{\lambda}=\lambda^2 =λ2eλkˉ=0kˉ!λkˉ=λ2eλeλ=λ2
所以:
E ( X 2 ) = λ 2 + λ E(X^2)=\lambda^2+\lambda E(X2)=λ2+λ
所以,方差:
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = λ 2 + λ − ( λ ) 2 = λ D(X)=E(X^2)-[E(X)]^2=\lambda^2+\lambda-(\lambda)^2=\lambda D(X)=E(X2)[E(X)]2=λ2+λ(λ)2=λ

例4均匀分布:设随机变量 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),求 D ( X ) D(X) D(X).
f ( x ) = { 1 b − a , a < x < b 0 , 其 他 f(x)=\begin{cases}\cfrac{1}{b-a},a<x<b\\0,\quad 其他\end{cases} f(x)=ba1,a<x<b0,
均匀分布的期望已经算出来过了:
E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b
方差:
D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 = ∫ a b x 2 1 b − a d x − ( a + b 2 ) 2 = ( b − a ) 2 12 D(X)=E(X^2)-[E(X)]^2=\int_a^bx^2\frac{1}{b-a}dx-(\frac{a+b}{2})^2=\frac{(b-a)^2}{12} D(X)=E(X2)[E(X)]2=abx2ba1dx(2a+b)2=12(ba)2

指数分布的例子:
在这里插入图片描述
搞屎分布的方差是 σ 2 \sigma^2 σ2
---------------------------------------------------------割你没商量3------------------------------------------------------

方差的常用性质

1°设 C C C是常数,则 D ( C ) = 0 D(C)=0 D(C)=0.
2°设 X X X是随机变量, C C C是常数,则有
D ( C X ) = C 2 D ( X ) , D ( X + C ) = D ( X ) D(CX)=C^2D(X),D(X+C)=D(X) D(CX)=C2D(X)D(X+C)=D(X)
3°设 X , Y X,Y XY是两个随机变量,则有
D ( X + Y ) = D ( X ) + D ( Y ) + 2 E { ( X − E ( X ) ) ( Y − E ( Y ) ) } . D(X+Y)=D(X)+D(Y)+2E\{(X-E(X))(Y-E(Y))\}. D(X+Y)=D(X)+D(Y)+2E{(XE(X))(YE(Y))}.
特别,若 X , Y X,Y XY相互独立,则有
D ( X + Y ) = D ( X ) + D ( Y ) . D(X+Y)=D(X)+D(Y). D(X+Y)=D(X)+D(Y).
这一性质可以推广到任意有限多个相互独立的随机变量之和的情况.
D ( X ) = 0 D(X)=0 D(X)=0的充要条件是 X X X以概率1取常数 E ( X ) E(X) E(X),即
P { X = E ( X ) } = 1. P\{X=E(X)\}=1. P{X=E(X)}=1.

2.协方差

如果两个随机变量X和Y是相互独立的,则
E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = 0 E\{[X-E(X)][Y-E(Y)]\}=0 E{[XE(X)][YE(Y)]}=0
---------------------------------------------------------割你没商量4------------------------------------------------------
证明:
E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = E { X Y − X E ( Y ) − Y E ( X ) + E ( X ) E ( Y ) } = E ( X Y ) − E ( X ) E ( Y ) − E ( Y ) E ( X ) + E ( X ) E ( Y ) = E ( X Y ) − E ( X ) E ( Y ) \begin{aligned}&E\{[X-E(X)][Y-E(Y)]\}\\ =&E\{XY-XE(Y)-YE(X)+E(X)E(Y)\}\\ =&E(XY)-E(X)E(Y)-E(Y)E(X)+E(X)E(Y)\\ =&E(XY)-E(X)E(Y) \end{aligned} ===E{[XE(X)][YE(Y)]}E{XYXE(Y)YE(X)+E(X)E(Y)}E(XY)E(X)E(Y)E(Y)E(X)+E(X)E(Y)E(XY)E(X)E(Y)
若X和Y是相互独立的, E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y) E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = 0 E\{[X-E(X)][Y-E(Y)]\}=0 E{[XE(X)][YE(Y)]}=0得证。
---------------------------------------------------------割你没商量4------------------------------------------------------
E { [ X − E ( X ) ] [ Y − E ( Y ) ] } ≠ 0 E\{[X-E(X)][Y-E(Y)]\}\neq0 E{[XE(X)][YE(Y)]}=0时,X和Y不相互独立,而是存在一定关系。
定义 E { [ X − E ( X ) ] [ Y − E ( Y ) ] } = 0 E\{[X-E(X)][Y-E(Y)]\}=0 E{[XE(X)][YE(Y)]}=0称为随机变量X和Y的协方差,记为: C o v ( X , Y ) Cov(X,Y) Cov(X,Y),即:
C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]}
协方差常用公式:
C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
C o v ( X , X ) = D ( X ) . C o v ( Y , Y ) = D ( Y ) Cov(X,X)=D(X).Cov(Y,Y)=D(Y) Cov(X,X)=D(X).Cov(Y,Y)=D(Y)
C o v ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) Cov(X+Y)=D(X)+D(Y)+2Cov(X,Y) Cov(X+Y)=D(X)+D(Y)+2Cov(X,Y)
C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)
协方差常见性质:
C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y),a,b是常数
C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

相关系数

ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρXY=D(X) D(Y) Cov(X,Y)
称为随机变量X与Y的相关系数。

定理
∣ ρ X Y ∣ ≤ 1 |\rho_{XY}|\leq1 ρXY1
ρ X Y \rho_{XY} ρXY越接近于1,X和Y相关性越强, ρ X Y = 0 \rho_{XY}=0 ρXY=0表示X和Y没有相关性,是相互独立的。 ρ X Y = ± 1 \rho_{XY}=\pm 1 ρXY=±1,则X和Y是线性关系: P { Y = a + b X = 1 } P\{Y=a+bX=1\} P{Y=a+bX=1}

协方差矩阵

二维随机变量 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)有四个二阶中心矩(设它们都存在),分别记为
c 11 = E { [ X 1 − E ( X 1 ) ] 2 } c 12 = E { [ X 1 − E ( X 1 ) ] [ X 2 − E ( X 2 ) ] } c 21 = E { [ X 2 − E ( X 2 ) ] [ X 1 − E ( X 1 ) ] } c 22 = E { [ X 2 − E ( X 2 ) ] 2 } \begin{aligned}c_{11}=&E\{[X_1-E(X_1)]^2\}\\ c_{12}=&E\{[X_1-E(X_1)][X_2-E(X_2)]\}\\ c_{21}=&E\{[X_2-E(X_2)][X_1-E(X_1)]\}\\ c_{22}=&E\{[X_2-E(X_2)]^2\} \end{aligned} c11=c12=c21=c22=E{[X1E(X1)]2}E{[X1E(X1)][X2E(X2)]}E{[X2E(X2)][X1E(X1)]}E{[X2E(X2)]2}
c 11 , c 22 c_{11},c_{22} c11,c22分别是 X 1 , X 2 X_1,X_2 X1,X2的方差, c 12 = c 21 c_{12}=c_{21} c12=c21 X 1 , X 2 X_1,X_2 X1,X2的协方差
将它们排成矩阵的形式:
[ c 11 c 12 c 21 c 22 ] \begin{bmatrix} c_{11} &c_{12} \\ c_{21}& c_{22} \end{bmatrix} [c11c21c12c22]
这个矩阵称为随机变量 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)的协方差矩阵
设n维随机变量 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)的二阶混合中心矩
c i j = C o v ( X i , X j ) = E { [ X i − E ( X i ) ] [ X j − E ( X j ) ] } , i , j = 1 , 2 , . . . , n c_{ij}=Cov(X_i,X_j)=E\{[X_i-E(X_i)][X_j-E(X_j)]\},i,j=1,2,...,n cij=Cov(Xi,Xj)=E{[XiE(Xi)][XjE(Xj)]},i,j=1,2,...,n
都存在,则称矩阵:
C = [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋮ c n 1 c n 2 ⋯ c n n ] n × n C=\begin{bmatrix} c_{11} & c_{12} & \cdots &c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n}\\ \vdots & \vdots & &\vdots \\ c_{n1} &c_{n2} & \cdots & c_{nn} \end{bmatrix}_{n×n} C=c11c21cn1c12c22cn2c1nc2ncnnn×n
为n维随机变量 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)的协方差矩阵,由于 c i j = c j i , i ≠ j , i , j = 1 , 2 , . . . , n c_{ij}=c_{ji},i\neq j,i,j=1,2,...,n cij=cji,i=j,i,j=1,2,...,n,因此矩阵C是一个对称矩阵。

n维正态随机变量的概率密度

引入列矩阵
X = [ x 1 x 2 ⋮ x n ] X=\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n\end{bmatrix} X=x1x2xn
μ = [ μ 1 μ 2 ⋮ μ n ] = [ E ( X 1 ) E ( X 2 ) ⋮ E ( X n ) ] \mu=\begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n\end{bmatrix}=\begin{bmatrix} E(X_1) \\ E(X_2) \\ \vdots \\ E(X_n) \end{bmatrix} μ=μ1μ2μn=E(X1)E(X2)E(Xn)
n维正态随机变量 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)的概率密度定义为:

其中C为 ( X 1 , X 2 , … , X n ) (X_1,X_2,…,X_n) (X1,X2,,Xn)的协方差矩阵。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

oldmao_2000

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值