题目描述
已知 nn 个整数 x_1,x_2,…,x_nx1,x2,…,xn ,以及 11 个整数 kk ( k<nk<n )。从 nn 个整数中任选 kk 个整数相加,可分别得到一系列的和。例如当 n=4,k=3n=4,k=3 , 44 个整数分别为 3,7,12,193,7,12,19 时,可得全部的组合与它们的和为:
3+7+12=223+7+12=22
3+7+19=293+7+19=29
7+12+19=387+12+19=38
3+12+19=343+12+19=34 。
现在,要求你计算出和为素数共有多少种。
例如上例,只有一种的和为素数: 3+7+19=293+7+19=29 。
输入输出格式
输入格式:键盘输入,格式为:
n,kn,k ( 1 \le n \le 20,k<n1≤n≤20,k<n )
x_1,x_2,…,x_n (1 \le x_i \le 5000000)x1,x2,…,xn(1≤xi≤5000000)
输出格式:屏幕输出,格式为: 11 个整数(满足条件的种数)。
输入输出样例
这是一道搜索题。
仔细看一下,其实原型就是一个cmn(m里面选n个)
再加上一个质数的判断和一个n个数的和就可以。
显然,用回溯做可以ac。
下面是我自己敲的代码:
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int mm=1000;
int isprime(int x)
{
for(int i=2;i<=sqrt(x);i++)
{
if(x%i==0)
return 0;
}
return 1;
}
int n;
int k;
int a[mm];
int counts;
bool b[mm];
int jishu=0;
void dfs(int f,int x)///选的第f个数,到第x个数了(从x里面选f个)
{
///cout<<"dfs("<<f<<','<<x<<')'<<endl;
if(x>n)
return;
else if(f>k+1)return;
else if(f>k)
{
//cout<<jishu<<endl;
if(isprime(jishu)==1)
counts++;
///cout<<jishu<<endl;
return;
}
else
{
for(int i=x;i<=n;i++)
{
if(b[i]==0)
{
//dfs(f,x+1);
jishu+=a[i];
b[i]=1;
dfs(f+1,i);
b[i]=0;
jishu-=a[i];
}
}
}
}
int main()
{
cin>>n>>k;
for(int i=1;i<=n;i++)
cin>>a[i];
dfs(1,1);
cout<<counts;
return 0;
}