完全背包问题

完全背包问题

有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。

第 i 种物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 种物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000

这个的主要区别是每一个物品有无限个,所以说状态的划分有所不同计算也有所不同

同样定义f[i,j],划分为f[i-1,j]与选第i个并且枚举可以选的所有数目;

#include <bits/stdc++.h>

using namespace std;

const int N=1005;
int f[N][N],v[N],w[N];
int main()
{
    int n,V;
    cin>>n>>V;
    for(int i=1;i<=n;++i){
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;++i)
        for(int j=0;j<=V;++j)
            for(int k=0;k*v[i]<=j;++k)
                f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
    cout<<f[n][V];
}
Time Limit Exceeded  

果然上面是会超时的,计算次数大约到了1e9

那么如何优化呢
观察f[i][j-v[i]]=max(f[i-1][j-v[i],f[i-1][j-v[i]2]+w[i]+f[i-1][j-v[i]3]+2w[i]+…+f[i-1][j-nv[i]]+(n-1)w[i];
而f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-v[i]2]+2w[i]+f[i-1][j-v[i]3]+3w[i]+…+f[i-1][j-n
v[i]]+(n)*w[i];
所以呢其实计算f[i][j]的时候很多已经重复计算的状态了,
f[i][j]=max(f[i-1][j],f[i][j-v[i]]+w[i])//我们在计算j的时候显然已经计算出来了j-v[i]那一项

那么同理
f[i][j+v[i]]=max(f[i-1][j+v[i]],f[i-1][j]+w[i],f[i-1][j-v[i]]+2w[i]+f[i-1][j-v[i]2]+3w[i]+…+f[i-1][j-nv[i]]+(n+1)w[i]
而f[i][j]=max(f[i-1][j],f[i-1][j-v[i]]+w[i],f[i-1][j-v[i]2]+2w[i]+f[i-1][j-v[i]3]+3w[i]+…+f[i-1][j-n
v[i]]+(n)*w[i];
所以如果我们想要从后往前搞这个j应该也是可行的吧

#include <bits/stdc++.h>

using namespace std;

const int N=1005;
int f[N][N],v[N],w[N];
int main()
{
    int n,V;
    cin>>n>>V;
    for(int i=1;i<=n;++i){
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;++i)
        for(int j=V;j>=0;--j)
            f[i][j]=max(f[i-1][j],f[i][j+v[i]]-w[i]);
    cout<<f[n][V];
}

好像并不可行问题出在我们没办法直接知道最终的结果f[0,j]=0(如果可以直接知道最终结果题目也没有意义了)
但01背包的优化是从最后向前枚举的j,那里我们计算i层的j用的是i-1层的j-v[i],显然在到第i层时已经计算出来了
但是这里用的j是本层的j,如果想要本层后面的j先被计算出来好像不是很简单

ac答案:
#include <bits/stdc++.h>

using namespace std;

const int N=1005;
int f[N][N],v[N],w[N];
int main()
{
    int n,V;
    cin>>n>>V;
    for(int i=1;i<=n;++i){
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;++i)
        for(int j=0;j<=V;++j){
            f[i][j]=f[i-1][j];
            if(j>=v[i])f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
        }
    cout<<f[n][V];
}

接下来是类似于前面的进一步空间的优化,这里同样计算i这一维度时,只用到了本维度的上一层所以说,用滚动数组就完了
但是区别于前面前面从后向前是为了保留上一层的状态,而这里反而需要本层 的前面的状态所以j从前往后
ac答案

#include <bits/stdc++.h>

using namespace std;

const int N=1005;
int f[N],v[N],w[N];
int main()
{
    int n,V;
    cin>>n>>V;
    for(int i=1;i<=n;++i){
        cin>>v[i]>>w[i];
    }
    for(int i=1;i<=n;++i)
        for(int j=v[i];j<=V;++j){
            f[j]=max(f[j],f[j-v[i]]+w[i]);
        }
    cout<<f[V];
}

使用多重背包的思想也可以解出完全背包问题,但是可能会慢一点
也启示很多背包问题都可以转化为01背包求解

#include<bits/stdc++.h>

using namespace std;
const int N=1005;

int f[N*12],w[N*12],v[N*12],idx=1;
int main()
{
    int n,V;
    cin>>n>>V;
    
    for(int i=1;i<=n;++i)
    {
        int s,wt,vt;
        scanf("%d %d",&vt,&wt);
        s=V/vt;
        for(int j=1;2*j<=s;j*=2){
            w[idx]=wt*j;
            v[idx++]=vt*j;
            s -=j;
        }
        if(s)   {w[idx]=wt*s;v[idx++]=vt*s;}
        
    }
    //接下来便是一个零一背包问题了
    for(int i=1;i<=idx;++i)
        for(int j=V;j>=v[i];--j)
            f[j]=max(f[j],f[j-v[i]]+w[i]);
            
    cout<<f[V];
    
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值