数据库SQL性能优化总结

一、SQL语句优化

1、对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引;

2、在 where 子句中对字段须避免以下操作,否则将导致引擎放弃使用索引而进行全表扫描;

  • 进行 null 值判断;
  • 使用 !=<> 操作符;
  • 使用 or 来连接条件,如果一个字段有索引,一个字段没有索引;
  • innot in 也要慎用;
  • 使用模糊查询 like '%abc%'
  • 在联合索引从左到右检索的过程中,遇到范围查询>, <, like, between就会形成断点,其后的所有索引都会失效。
  • 使用参数(SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择);
  • 对字段进行表达式操作、算术运算、函数操作

3、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致

4、对于多张大数据量(这里几百条就算大了)的表JOIN,要先分页再JOIN,否则逻辑读会很高,性能很差。(通过先查询出一部分结果再JOIN,中间表的长度有限效率就不是问题。)

5、不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。

6、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

7、应尽可能的避免更新 clustered (聚簇)索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

8、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

9、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要些。

10、任何地方都不要使用 select * from t ,用具体的字段列表代替“ * ”,不要返回用不到的任何字段

11、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

12、如果使用到临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

13、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

15、尽量避免大事务操作,提高系统并发能力。

16、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。(拆分大的 DELETE 或INSERT 语句,批量提交SQL语句,因为这两个操作是会锁表的,表一旦锁住了,别的操作都进不来了。正确的方式是:每次暂停一段时间,释放表让其他进程/线程访问)

二、数据库访问性能优化

要正确的优化SQL,我们需要快速定位性能瓶颈点,也就是说快速找到我们SQL主要的开销在哪里?而大多数情况性能最慢的设备会是瓶颈点,如下载时网络速度可能会是瓶颈点,本地复制文件时硬盘可能会是瓶颈点,为什么这些一般的工作我们能快速确认瓶颈点呢,因为我们对这些慢速设备的性能数据有一些基本的认识,如网络带宽是2Mbps,硬盘是每分钟7200转等等。因此,为了快速找到SQL的性能瓶颈点,我们也需要了解我们计算机系统的硬件基本性能指标,下图展示的当前主流计算机性能指标数据。
在这里插入图片描述

从图上可以看到基本上每种设备都有两个指标:

  • 延时(响应时间):表示硬件的突发处理能力;
  • 带宽(吞吐量):代表硬件持续处理能力。

从上图可以看出,计算机系统硬件性能从高到代依次为:

CPU——Cache(L1-L2-L3)——内存——SSD硬盘——网络——硬盘

根据数据库知识,我们可以列出每种硬件主要的工作内容:

  • CPU及内存:缓存数据访问、比较、排序、事务检测、SQL解析、函数或逻辑运算;
  • 网络:结果数据传输、SQL请求、远程数据库访问(dblink);
  • 硬盘:数据访问、数据写入、日志记录、大数据量排序、大表连接。

根据当前计算机硬件的基本性能指标及其在数据库中主要操作内容,可以整理出如下图所示的性能基本优化法则:
在这里插入图片描述

这个优化法则归纳为5个层次:

1、减少数据访问(减少磁盘访问)
2、返回更少数据(减少网络传输或磁盘访问)
3、减少交互次数(减少网络传输)
4、减少服务器CPU开销(减少CPU及内存开销)
5、利用更多资源(增加资源)

由于每一层优化法则都是解决其对应硬件的性能问题,所以带来的性能提升比例也不一样。传统数据库系统设计是也是尽可能对低速设备提供优化方法,因此针对低速设备问题的可优化手段也更多,优化成本也更低。我们任何一个SQL的性能优化都应该按这个规则由上到下来诊断问题并提出解决方案,而不应该首先想到的是增加资源解决问题。

以下是每个优化法则层级对应优化效果及成本经验参考:

优化法则性能提升效果优化成本
减少数据访问1~1000
返回更少数据1~100
减少交互次数1~20
减少服务器CPU开销1~5
利用更多资源@~10

oracle数据库两个基本概念:
&ThickSpace; \;
(1)数据块是数据库中数据在磁盘中存储的最小单位,也是一次IO访问的最小单位,一个数据块通常可以存储多条记录,数据块大小是DBA在创建数据库或表空间时指定,可指定为2K、4K、8K、16K或32K字节。下图是一个Oracle数据库典型的物理结构,一个数据库可以包括多个数据文件,一个数据文件内又包含多个数据块;
在这里插入图片描述
(2)ROWID是每条记录在数据库中的唯一标识,通过ROWID可以直接定位记录到对应的文件号及数据块位置。ROWID内容包括文件号、对像号、数据块号、记录槽号,如下图所示:
在这里插入图片描述

2.1 减少数据访问
2.1.1 创建并使用正确的索引

索引会大大增加表记录的DML(INSERT,UPDATE,DELETE)开销,正确的索引可以让性能提升100,1000倍以上,不合理的索引也可能会让性能下降100倍,因此在一个表中创建什么样的索引需要平衡各种业务需求。

索引常见问题:

(1)索引有哪些种类?

常见的索引有B-TREE索引、位图索引、全文索引,位图索引一般用于数据仓库应用,全文索引由于使用较少,这里不深入介绍。B-TREE索引包括很多扩展类型,如组合索引、反向索引、函数索引等等,以下是B-TREE索引的简单介绍:

B-TREE索引也称为平衡树索引(Balance Tree),它是一种按字段排好序树形目录结构,主要用于提升查询性能和唯一约束支持。B-TREE索引的内容包括根节点、分支节点、叶子节点。

叶子节点内容索引字段内容 + 表记录ROWID

根节点,分支节点内容:当一个数据块中不能放下所有索引字段数据时,就会形成树形的根节点或分支节点,根节点与分支节点保存了索引树的顺序各层级间的引用关系

一个普通的B-TREE索引结构示意图如下所示:
在这里插入图片描述
如果我们把一个表的内容认为是一本字典,那索引就相当于字典的目录,如下图所示:
在这里插入图片描述
图中是一个字典按部首+笔划数的目录,相当于给字典建了一个按部首+笔划的组合索引。

一个表中可以建多个索引,就如一本字典可以建多个目录一样(按拼音、笔划、部首等等)。

一个索引也可以由多个字段组成,称为组合索引,如上图就是一个按部首+笔划的组合目录。

(2)SQL什么条件会使用索引?

当字段上建有索引时,通常以下情况会使用索引:

INDEX_COLUMN = ?

INDEX_COLUMN > ?

INDEX_COLUMN >= ?

INDEX_COLUMN < ?

INDEX_COLUMN <= ?

INDEX_COLUMN between ? and ?

INDEX_COLUMN in (?,?,...,?)

INDEX_COLUMN like ?||'%'(后导模糊查询)

T1. INDEX_COLUMN=T2. COLUMN1(两个表通过索引字段关联)

(3)SQL什么条件不会使用索引?

--不等于操作不能使用索引
INDEX_COLUMN <> ?
INDEX_COLUMN not in (?,?,...,?)

--经过普通运算或函数运算后的索引字段不能使用索引
function(INDEX_COLUMN) = ?
INDEX_COLUMN + 1 = ?
INDEX_COLUMN || 'a' = ?

--含前导模糊查询的Like语法不能使用索引
INDEX_COLUMN like '%'||?
INDEX_COLUMN like '%'||?||'%'

--B-TREE索引里不保存字段为NULL值记录,因此IS NULL不能使用索引
INDEX_COLUMN is null

--Oracle在做数值比较时需要将两边的数据转换成同一种数据类型,如果两边数据类型不同时会对字段值隐式转换,
--相当于加了一层函数处理,所以不能使用索引。
NUMBER_INDEX_COLUMN = '12345'
CHAR_INDEX_COLUMN = 12345

--给索引查询的值应是已知数据,不能是未知字段值。
a.INDEX_COLUMN = a.COLUMN_1

注:
经过函数运算字段的字段要使用可以使用函数索引,这种需求建议与DBA沟通。
&ThickSpace; \;
有时候我们会使用多个字段的组合索引,如果查询条件中第一个字段不能使用索引,那整个查询也不能使用索引
&ThickSpace; \;
如:我们company表建了一个id+name的组合索引,以下SQL是不能使用索引的
&ThickSpace; \;
Select * from company where name = ?
&ThickSpace; \;
Oracle9i后引入了一种index skip scan的索引方式来解决类似的问题,但是通过index skip scan提高性能的条件比较特殊,使用不好反而性能会更差。

(4)我们一般在什么字段上建索引?

这是一个非常复杂的话题,需要对业务及数据充分分析后再能得出结果。主键及外键通常都要有索引,其它需要建索引的字段应满足以下条件:

  • 字段出现在查询条件中,并且查询条件可以使用索引;
  • 语句执行频率高,一天会有几千次以上;
  • 通过字段条件可筛选的记录集很小

数据筛选比例是多少才适合?
这个没有固定值,需要根据表数据量来评估,以下是经验公式,可用于快速评估:
小表(记录数小于10000行的表):筛选比例<10%;
大表:(筛选返回记录数)<(表总记录数*单条记录长度)/10000/16
单条记录长度 ≈ 字段平均内容长度之和 + 字段数*2

以下是一些字段是否需要建B-TREE索引的经验分类:
在这里插入图片描述

(5)如何知道SQL是否使用了正确的索引?

简单SQL可以根据索引使用语法规则判断,复杂的SQL不好办,判断SQL的响应时间是一种策略,但是这会受到数据量、主机负载及缓存等因素的影响,有时数据全在缓存里,可能全表访问的时间比索引访问时间还少。要准确知道索引是否正确使用,需要到数据库中查看SQL真实的执行计划,这个话题比较复杂,详见SQL执行计划专题介绍。

(6)索引对DML(INSERT,UPDATE,DELETE)附加的开销有多少?

这个没有固定的比例,与每个表记录的大小及索引字段大小密切相关,以下是一个普通表测试数据,仅供参考:

  • 索引对于Insert性能降低56%
  • 索引对于Update性能降低47%
  • 索引对于Delete性能降低29%

因此对于写IO压力比较大的系统,表的索引需要仔细评估必要性,另外索引也会占用一定的存储空间。

2.1.2 只通过索引访问数据

有些时候,我们只是访问表中的几个字段,并且字段内容较少,我们可以为这几个字段单独建立一个组合索引,这样就可以直接只通过访问索引就能得到数据,一般索引占用的磁盘空间比表小很多,所以这种方式可以大大减少磁盘IO开销

如:

select id,name from company where type = '2';

如果这个SQL经常使用,我们可以在type,id,name上创建组合索引

create index my_comb_index on company(type, id, name);

有了这个组合索引后,SQL就可以直接通过my_comb_index索引返回数据,不需要访问company表。

还是拿字典举例:有一个需求,需要查询一本汉语字典中所有汉字的个数,如果我们的字典没有目录索引,那我们只能从字典内容里一个一个字计数,最后返回结果。如果我们有一个拼音目录,那就可以只访问拼音目录的汉字进行计数。如果一本字典有1000页,拼音目录有20页,那我们的数据访问成本相当于全表访问的50分之一。

切记,性能优化是无止境的,当性能可以满足需求时即可,不要过度优化。在实际数据库中我们不可能把每个SQL请求的字段都建在索引里,所以这种只通过索引访问数据的方法一般只用于核心应用,也就是那种对核心表访问量最高且查询字段数据量很少的查询。

2.1.3 优化SQL执行计划

SQL执行计划是关系型数据库最核心的技术之一,它表示SQL执行时的数据访问算法。由于业务需求越来越复杂,表数据量也越来越大,程序员越来越懒惰,SQL也需要支持非常复杂的业务逻辑,但SQL的性能还需要提高,因此,优秀的关系型数据库除了需要支持复杂的SQL语法及更多函数外,还需要有一套优秀的算法库来提高SQL性能。

目前ORACLE有SQL执行计划的算法约300种,而且一直在增加,所以SQL执行计划是一个非常复杂的课题,一个普通DBA能掌握50种就很不错了,就算是资深DBA也不可能把每个执行计划的算法描述清楚。虽然有这么多种算法,但并不表示我们无法优化执行计划,因为我们常用的SQL执行计划算法也就十几个,如果一个程序员能把这十几个算法搞清楚,那就掌握了80%的SQL执行计划调优知识。


2、返回更少的数据
2.1 数据分页处理

一般数据分页方式有:

(1)客户端(应用程序或浏览器)分页

将数据从应用服务器全部下载到本地应用程序或浏览器,在应用程序或浏览器内部通过本地代码进行分页处理

  • 优点:编码简单,减少客户端与应用服务器网络交互次数

  • 缺点:首次交互时间长,占用客户端内存

  • 适应场景:客户端与应用服务器网络延时较大,但要求后续操作流畅,如手机GPRS,超远程访问(跨国)等等。

(2)应用服务器分页

将数据从数据库服务器全部下载到应用服务器,在应用服务器内部再进行数据筛选。以下是一个应用服务器端Java程序分页的示例:

List list=executeQuery(“select * from employee order by id”);
Int count= list.size();
List subList= list.subList(10, 20);
  • 优点:编码简单,只需要一次SQL交互,总数据与分页数据差不多时性能较好。
  • 缺点:总数据量较多时性能较差。
  • 适应场景:数据库系统不支持分页处理,数据量较小并且可控。

(3)数据库SQL分页

采用数据库SQL分页需要两次SQL完成:

一个SQL计算总数量

一个SQL返回分页后的数据

  • 优点:性能好
  • 缺点:编码复杂,各种数据库语法不同,需要两次SQL交互。

oracle数据库一般采用rownum来进行分页,常用分页语法有如下两种:

直接通过rownum分页:

select * from (
         select a.*,rownum rn from
                   (select * from product a where company_id=? order by status) a
         where rownum<=20)
where rn>10;

数据访问开销=索引IO + 索引全部记录结果对应的表数据IO

采用rowid分页语法:

优化原理是通过纯索引找出分页记录的ROWID,再通过ROWID回表返回数据,要求内层查询和排序字段全在索引里。

create index myindex on product(company_id,status);

select b.* from (
         select * from (
                   select a.*,rownum rn from
                            (select rowid rid,status from product a where company_id=? order by status) a
                   where rownum<=20)
         where rn>10) a, product b
where a.rid=b.rowid;

数据访问开销 = 索引IO + 索引分页结果对应的表数据IO

实例:
一个公司产品有1000条记录,要分页取其中20个产品,假设访问公司索引需要50个IO,2条记录需要1个表数据IO。
&ThickSpace; \;
那么按第一种ROWNUM分页写法,需要550(50+1000/2)个IO,按第二种ROWID分页写法,只需要60个IO(50+20/2);

2.2 只返回需要的字段

通过去除不必要的返回字段可以提高性能,例:

调整前:

select * from product where company_id = ?;

调整后:

select id,name from product where company_id = ?;
  • 优点:
    1、减少数据在网络上传输开销
    2、减少服务器数据处理开销
    3、减少客户端内存占用
    4、字段变更时提前发现问题,减少程序BUG
    5、如果访问的所有字段刚好在一个索引里面,则可以使用纯索引访问提高性能。

  • 缺点:增加编码工作量

由于会增加一些编码工作量,所以一般需求通过开发规范来要求程序员这么做,否则等项目上线后再整改工作量更大。

如果你的查询表中有大字段或内容较多的字段,如备注信息、文件内容等等,那在查询表时一定要注意这方面的问题,否则可能会带来严重的性能问题。如果表经常要查询并且请求大内容字段的概率很低,我们可以采用分表处理,将一个大表分拆成两个一对一的关系表,将不常用的大内容字段放在一张单独的表中。如一张存储上传文件的表:

T_FILE(ID, FILE_NAME, FILE_SIZE, FILE_TYPE, FILE_CONTENT)

我们可以分拆成两张一对一的关系表:

T_FILE(ID,FILE_NAME,FILE_SIZE,FILE_TYPE)

T_FILECONTENT(ID, FILE_CONTENT)

通过这种分拆,可以大大提少T_FILE表的单条记录及总大小,这样在查询T_FILE时性能会更好,当需要查询FILE_CONTENT字段内容时再访问T_FILECONTENT表。

3、减少交互次数
3.1 batch DML

数据库访问框架一般都提供了批量提交的接口,jdbc支持batch的提交处理方法,当你一次性要往一个表中插入1000万条数据时,如果采用普通的executeUpdate处理,那么和服务器交互次数为1000万次,按每秒钟可以向数据库服务器提交10000次估算,要完成所有工作需要1000秒。如果采用批量提交模式,1000条提交一次,那么和服务器交互次数为1万次,交互次数大大减少。采用batch操作一般不会减少很多数据库服务器的物理IO,但是会大大减少客户端与服务端的交互次数,从而减少了多次发起的网络延时开销,同时也会降低数据库的CPU开销

假设要向一个普通表插入1000万数据,每条记录大小为1K字节,表上没有任何索引,客户端与数据库服务器网络是100Mbps,以下是根据现在一般计算机能力估算的各种batch大小性能对比值:
在这里插入图片描述
从上可以看出,Insert操作加大Batch可以对性能提高近8倍性能,一般根据主键的Update或Delete操作也可能提高2-3倍性能,但不如Insert明显,因为Update及Delete操作可能有比较大的开销在物理IO访问。以上仅是理论计算值,实际情况需要根据具体环境测量。

3.2、In List
很多时候我们需要按一些ID查询数据库记录,我们可以采用一个ID一个请求发给数据库,如下所示:

for :var in ids[] do begin

select * from mytable where id=:var;

end;

我们也可以做一个小的优化, 如下所示,用ID INLIST的这种方式写SQL:

select * from mytable where id in(:id1,id2,…,idn);

通过这样处理可以大大减少SQL请求的数量,从而提高性能。那如果有10000个ID,那是不是全部放在一条SQL里处理呢?答案肯定是否定的。首先大部份数据库都会有SQL长度和IN里个数的限制,如ORACLE的IN里就不允许超过1000个值。

另外当前数据库一般都是采用基于成本的优化规则,当IN数量达到一定值时有可能改变SQL执行计划,从索引访问变成全表访问,这将使性能急剧变化。随着SQL中IN的里面的值个数增加,SQL的执行计划会更复杂,占用的内存将会变大,这将会增加服务器CPU及内存成本。

评估在IN里面一次放多少个值还需要考虑应用服务器本地内存的开销,有并发访问时要计算本地数据使用周期内的并发上限,否则可能会导致内存溢出。

综合考虑,一般IN里面的值个数超过20个以后性能基本没什么太大变化,也特别说明不要超过100,超过后可能会引起执行计划的不稳定性及增加数据库CPU及内存成本,这个需要专业DBA评估。

3.3 设置Fetch Size

当我们采用select从数据库查询数据时,数据默认并不是一条一条返回给客户端的,也不是一次全部返回客户端的,而是根据客户端fetch_size参数处理,每次只返回fetch_size条记录,当客户端游标遍历到尾部时再从服务端取数据,直到最后全部传送完成。所以如果我们要从服务端一次取大量数据时,可以加大fetch_size,这样可以减少结果数据传输的交互次数及服务器数据准备时间,提高性能。

以下是jdbc测试的代码,采用本地数据库,表缓存在数据库CACHE中,因此没有网络连接及磁盘IO开销,客户端只遍历游标,不做任何处理,这样更能体现fetch参数的影响:

String vsql ="select * from t_employee";
PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);
pstmt.setFetchSize(1000);
ResultSet rs = pstmt.executeQuery(vsql);
int cnt = rs.getMetaData().getColumnCount();
Object o;
while (rs.next()) {
    for (int i = 1; i <= cnt; i++) {
       o = rs.getObject(i);
    }
}

测试示例中的employee表有100000条记录,每条记录平均长度135字节

以下是测试结果,对每种fetchsize测试5次再取平均值:
在这里插入图片描述

Oracle jdbc fetchsize默认值为10,由上测试可以看出fetchsize对性能影响还是比较大的,但是当fetchsize大于100时就基本上没有影响了。fetchsize并不会存在一个最优的固定值,因为整体性能与记录集大小及硬件平台有关。根据测试结果建议当一次性要取大量数据时这个值设置为100左右,不要小于40。注意,fetchsize不能设置太大,如果一次取出的数据大于JVM的内存会导致内存溢出,所以建议不要超过1000,太大了也没什么性能提高,反而可能会增加内存溢出的危险。

注:图中fetchsize在128以后会有一些小的波动,这并不是测试误差,而是由于resultset填充到具体对像时间不同的原因,由于resultset已经到本地内存里了,所以估计是由于CPU的L1,L2 Cache命中率变化造成,由于变化不大,所以笔者也未深入分析原因。

iBatis的SqlMapping配置文件可以对每个SQL语句指定fetchsize大小,如下所示:

<select id="getAllProduct" resultMap="HashMap" fetchSize="1000">
select * from employee
</select>
3.4 使用存储过程

大型数据库一般都支持存储过程,合理的利用存储过程也可以提高系统性能。如你有一个业务需要将A表的数据做一些加工然后更新到B表中,但是又不可能一条SQL完成,这时你需要如下3步操作:

a:将A表数据全部取出到客户端;

b:计算出要更新的数据;

c:将计算结果更新到B表。

如果采用存储过程你可以将整个业务逻辑封装在存储过程里,然后在客户端直接调用存储过程处理,这样可以减少网络交互的成本

当然,存储过程也并不是十全十美,存储过程有以下缺点

a、不可移植性,每种数据库的内部编程语法都不太相同,当你的系统需要兼容多种数据库时最好不要用存储过程。

b、学习成本高,DBA一般都擅长写存储过程,但并不是每个程序员都能写好存储过程,除非你的团队有较多的开发人员熟悉写存储过程,否则后期系统维护会产生问题。

c、业务逻辑多处存在,采用存储过程后也就意味着你的系统有一些业务逻辑不是在应用程序里处理,这种架构会增加一些系统维护和调试成本。

d、存储过程和常用应用程序语言不一样,它支持的函数及语法有可能不能满足需求,有些逻辑就只能通过应用程序处理。

e、如果存储过程中有复杂运算的话,会增加一些数据库服务端的处理成本,对于集中式数据库可能会导致系统可扩展性问题。

f、为了提高性能,数据库会把存储过程代码编译成中间运行代码(类似于java的class文件),所以更像静态语言。当存储过程引用的对象(表、视图等等)结构改变后,存储过程需要重新编译才能生效,在24*7高并发应用场景,一般都是在线变更结构的,所以在变更的瞬间要同时编译存储过程,这可能会导致数据库瞬间压力上升引起故障(Oracle数据库就存在这样的问题)。

个人观点:普通业务逻辑尽量不要使用存储过程,定时性的ETL任务或报表统计函数可以根据团队资源情况采用存储过程处理。

3.5、优化业务逻辑

要通过优化业务逻辑来提高性能是比较困难的,这需要程序员对所访问的数据及业务流程非常清楚。

举一个案例:

某移动公司推出优惠套参,活动对像为VIP会员并且2010年1,2,3月平均话费20元以上的客户。

那我们的检测逻辑为:

select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003';

select vip_flag from member where phone_no='13988888888';

if avg_money>20 and vip_flag=true then

begin

  执行套参();
  
end;

如果我们修改业务逻辑为:

select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003';

if avg_money > 20 then

begin

  select vip_flag from member where phone_no='13988888888';

  if vip_flag=true then

  begin

    执行套参();

  end;

end;

通过这样可以减少一些判断vip_flag的开销,平均话费20元以下的用户就不需要再检测是否VIP了。

如果程序员分析业务,VIP会员比例为1%,平均话费20元以上的用户比例为90%,那我们改成如下:

select vip_flag from member where phone_no='13988888888';

if vip_flag=true then

begin

  select avg(money) as avg_money from bill where phone_no='13988888888' and date between '201001' and '201003';

  if avg_money>20 then

  begin

    执行套参();

  end;

end;

这样就只有1%的VIP会员才会做检测平均话费,最终大大减少了SQL的交互次数。

以上只是一个简单的示例,实际的业务总是比这复杂得多,所以一般只是高级程序员更容易做出优化的逻辑,但是我们需要有这样一种成本优化的意识。

3.6 使用ResultSet游标处理记录

现在大部分Java框架都是通过jdbc从数据库取出数据,然后装载到一个list里再处理,list里可能是业务Object,也可能是hashmap。

由于JVM内存一般都小于4G,所以不可能一次通过sql把大量数据装载到list里。为了完成功能,很多程序员喜欢采用分页的方法处理,如一次从数据库取1000条记录,通过多次循环搞定,保证不会引起JVM Out of memory问题。

以下是实现此功能的代码示例,t_employee表有10万条记录,设置分页大小为1000:

d1 = Calendar.getInstance().getTime();

vsql = "select count(*) cnt from t_employee";

pstmt = conn.prepareStatement(vsql);

ResultSet rs = pstmt.executeQuery();

Integer cnt = 0;

while (rs.next()) {

         cnt = rs.getInt("cnt");

}

Integer lastid=0;

Integer pagesize=1000;

System.out.println("cnt:" + cnt);

String vsql = "select count(*) cnt from t_employee";

PreparedStatement pstmt = conn.prepareStatement(vsql);

ResultSet rs = pstmt.executeQuery();

Integer cnt = 0;

while (rs.next()) {

         cnt = rs.getInt("cnt");

}

Integer lastid = 0;

Integer pagesize = 1000;

System.out.println("cnt:" + cnt);

for (int i = 0; i <= cnt / pagesize; i++) {

         vsql = "select * from (select * from t_employee where id>? order by id) where rownum<=?";

         pstmt = conn.prepareStatement(vsql);

         pstmt.setFetchSize(1000);

         pstmt.setInt(1, lastid);

         pstmt.setInt(2, pagesize);

         rs = pstmt.executeQuery();

         int col_cnt = rs.getMetaData().getColumnCount();

         Object o;

         while (rs.next()) {

                   for (int j = 1; j <= col_cnt; j++) {

                            o = rs.getObject(j);

                   }

                   lastid = rs.getInt("id");

         }

         rs.close();

         pstmt.close();

}

以上代码实际执行时间为6.516秒

很多持久层框架为了尽量让程序员使用方便,封装了jdbc通过statement执行数据返回到resultset的细节,导致程序员会想采用分页的方式处理问题。实际上如果我们采用jdbc原始的resultset游标处理记录,在resultset循环读取的过程中处理记录,这样就可以一次从数据库取出所有记录。显著提高性能。

这里需要注意的是,采用resultset游标处理记录时,应该将游标的打开方式设置为FORWARD_READONLY模式(ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY),否则会把结果缓存在JVM里,造成JVM Out of memory问题。

代码示例:

String vsql ="select * from t_employee";

PreparedStatement pstmt = conn.prepareStatement(vsql,ResultSet.TYPE_FORWARD_ONLY,ResultSet.CONCUR_READ_ONLY);

pstmt.setFetchSize(100);

ResultSet rs = pstmt.executeQuery(vsql);

int col_cnt = rs.getMetaData().getColumnCount();

Object o;

while (rs.next()) {

         for (int j = 1; j <= col_cnt; j++) {

                   o = rs.getObject(j);

         }

}

调整后的代码实际执行时间为3.156秒

从测试结果可以看出性能提高了1倍多,如果采用分页模式数据库每次还需发生磁盘IO的话那性能可以提高更多。

iBatis等持久层框架考虑到会有这种需求,所以也有相应的解决方案,在iBatis里我们不能采用queryForList的方法,而应用该采用queryWithRowHandler加回调事件的方式处理,如下所示:

MyRowHandler myrh=new MyRowHandler();

sqlmap.queryWithRowHandler("getAllEmployee", myrh);

class MyRowHandler implements RowHandler {

    public void handleRow(Object o) {

       //todo something

    }

}

iBatis的queryWithRowHandler很好的封装了resultset遍历的事件处理,效果及性能与resultset遍历一样,也不会产生JVM内存溢出。

4、减少数据库服务器CPU运算
4.1 合理使用排序

Oracle的排序算法一直在优化,但是总体时间复杂度约等于nlog(n)。普通OLTP系统排序操作一般都是在内存里进行的,对于数据库来说是一种CPU的消耗,曾在PC机做过测试,单核普通CPU在1秒钟可以完成100万条记录的全内存排序操作,所以说由于现在CPU的性能增强,对于普通的几十条或上百条记录排序对系统的影响也不会很大。但是当你的记录集增加到上万条以上时,你需要注意是否一定要这么做了,大记录集排序不仅增加了CPU开销,而且可能会由于内存不足发生硬盘排序的现象,当发生硬盘排序时性能会急剧下降,这种需求需要与DBA沟通再决定,取决于你的需求和数据,所以只有你自己最清楚,而不要被别人说排序很慢就吓倒。

以下列出了可能会发生排序操作的SQL语法:

  • Order by
  • Group by
  • Distinct
  • Exists子查询
  • Not Exists子查询
  • In子查询
  • Not In子查询
  • Union(并集),Union All也是一种并集操作,但是不会发生排序,如果你确认两个数据集不需要执行去除重复数据操作,那请使用Union All 代替Union- 。
  • Minus(差集)
  • Intersect(交集)
  • Create Index
  • Merge Join,这是一种两个表连接的内部算法,执行时会把两个表先排序好再连接,应用于两个大表连接的操作。如果你的两个表连接的条件都是等值运算,那可以采用Hash Join来提高性能,因为Hash Join使用Hash 运算来代替排序的操作。具体原理及设置参考SQL执行计划优化专题。
4.3 减少比较操作

我们SQL的业务逻辑经常会包含一些比较操作,如a=b,a<b之类的操作,对于这些比较操作数据库都体现得很好,但是如果有以下操作,我们需要保持警惕:

Like模糊查询,如下所示:

a like%abc%

Like模糊查询对于数据库来说不是很擅长,特别是你需要模糊检查的记录有上万条以上时,性能比较糟糕,这种情况一般可以采用专用Search或者采用全文索引方案来提高性能。

不能使用索引定位的大量In List,如下所示:

a in (:1,:2,:3,,:n)   ----n>20

如果这里的a字段不能通过索引比较,那数据库会将字段与in里面的每个值都进行比较运算,如果记录数有上万以上,会明显感觉到SQL的CPU开销加大,这个情况有两种解决方式:

a、 将in列表里面的数据放入一张中间小表,采用两个表Hash Join关联的方式处理;

b、 采用str2varList方法将字段串列表转换一个临时表处理,关于str2varList方法可以在网上直接查询,这里不详细介绍。

以上两种解决方案都需要与中间表Hash Join的方式才能提高性能,如果采用了Nested Loop的连接方式性能会更差。

如果发现我们的系统IO没问题但是CPU负载很高,就有可能是上面的原因,这种情况不太常见,如果遇到了最好能和DBA沟通并确认准确的原因。

4.4 大量复杂运算在客户端处理

什么是复杂运算,一般我认为是一秒钟CPU只能做10万次以内的运算。如含小数的对数及指数运算、三角函数、3DES及BASE64数据加密算法等等。

如果有大量这类函数运算,尽量放在客户端处理,一般CPU每秒中也只能处理1万-10万次这样的函数运算,放在数据库内不利于高并发处理。

5、利用更多的资源
5.1 客户端多进程并行访问

多进程并行访问是指在客户端创建多个进程(线程)每个进程建立一个与数据库的连接,然后同时向数据库提交访问请求。当数据库主机资源有空闲时,我们可以采用客户端多进程并行访问的方法来提高性能。如果数据库主机已经很忙时,采用多进程并行访问性能不会提高,反而可能会更慢。所以使用这种方式最好与DBA或系统管理员进行沟通后再决定是否采用。

例如:
我们有10000个产品ID,现在需要根据ID取出产品的详细信息,如果单线程访问,按每个IO要5ms计算,忽略主机CPU运算及网络传输时间,我们需要50s才能完成任务。如果采用5个并行访问,每个进程访问2000个ID,那么10s就有可能完成任务。

那是不是并行数越多越好呢,开1000个并行是否只要50ms就搞定,答案肯定是否定的,当并行数超过服务器主机资源的上限时性能就不会再提高,如果再增加反而会增加主机的进程间调度成本和进程冲突机率。

以下是一些如何设置并行数的基本建议:

如果瓶颈在服务器主机,但是主机还有空闲资源,那么最大并行数取主机CPU核数和主机提供数据服务的磁盘数两个参数中的最小值,同时要保证主机有资源做其它任务。

如果瓶颈在客户端处理,但是客户端还有空闲资源,那建议不要增加SQL的并行,而是用一个进程取回数据后在客户端起多个进程处理即可,进程数根据客户端CPU核数计算。

如果瓶颈在客户端网络,那建议做数据压缩或者增加多个客户端,采用map reduce的架构处理。

如果瓶颈在服务器网络,那需要增加服务器的网络带宽或者在服务端将数据压缩后再处理了。

5.2 数据库并行处理

数据库并行处理是指客户端一条SQL的请求,数据库内部自动分解成多个进程并行处理,如下图所示:
在这里插入图片描述
并不是所有的SQL都可以使用并行处理,一般只有对表或索引进行全部访问时才可以使用并行。数据库表默认是不打开并行访问,所以需要指定SQL并行的提示,如下所示:

select /*+parallel(a,4)*/ * from employee;
  • 并行的优点:
    使用多进程处理,充分利用数据库主机资源(CPU,IO),提高性能。

  • 并行的缺点:
    1、单个会话占用大量资源,影响其它会话,所以只适合在主机负载低时期使用;
    2、只能采用直接IO访问,不能利用缓存数据,所以执行前会触发将脏缓存数据写入磁盘操作。

注:
1、并行处理在OLTP类系统中慎用,使用不当会导致一个会话把主机资源全部占用,而正常事务得不到及时响应,所以一般只是用于数据仓库平台。
2、一般对于百万级记录以下的小表采用并行访问性能并不能提高,反而可能会让性能更差。

转自:数据库SQL优化大总结1之- 百万级数据库优化方案

1 性能优化 1.1 避免频繁 commit,尤其是把 commit 写在循环体中每次循环都进行commit。 1.2 使用绑定变量,避免常量的直接引用。 示例:以下书写不符合本规范。 INSERT INTO sm_users (user_id, user_name, created_by, creation_date) VALUES (1, 'Tang', -1, SYSDATE); 建议用如下方式操作: DECLARE v_user_id sm_users.user_id%TYPE; v_user_name sm_users_user_name%TYPE; v_created_by sm_users.created_by%TYPE; v_creation_date sm_users.creation_date%TYPE; BEGIN ... INSERT INTO sm_users (user_id, user_name, created_by, creation_date) VALUES (v_user_id, v_user_name, v_created_by, v_creation_date); END; 1.3 Operator 的使用规范  IN  比较容易写及清晰易懂  但效能是比较低的  ORACLE试图将其转换成多个表的连接,如果转换不成功则先执行IN里面的子查询,再查询外层的表记录,如果转换成功则直接采用多个表的连接方式查询。由此可见用IN的SQL至少多了一个转换的过程。一般的SQL都可以转换成功,但对于含有分组统计等方面的SQL就不能转换了。  NOT IN  此操作是强列推荐不使用的,因为不能应用表的索引。  推荐方案:用NOT EXISTS 或(Outer-Join+判断为空)方案代替 例如: SELECT deptno FROM dept WHERE deptno NOT IN(SELECT deptno FROM emp) 建议写成: SELECT deptno FROM dept, emp WHERE dept.deptno = emp.deptno(+) AND emp.deptno IS NULL  <>  永远不会用到索引的  推荐方案:用其它相同功能的操作运算代替,如: a<>0 改为 a>0 or a<0 a<>’’ 改为 a>’’  IS NULL 或IS NOT NULL  一般是不会应用索引的,因为B-tree索引是不索引空值的。  推荐方案:用其它相同功能的操作运算代替,如: a is not null 改为 a>0 或a>’’  不允许字段为空,而用一个default代替空值,如业扩申请中状态区位不允许为空, default为申请。  > 及 <  有索引就会采用索引查找  但有的情况下可以对它进行优化  如一个表有100万记录,一个数值型字段A,30万记录的A=0,30万记录的A=1,39万记录的A=2,1万记录的A=3。那么执行A>2与A>=3的效果就有很大的区别了,因为A>2时ORACLE会先找出为2的记录索引再进行比较,而A>=3时ORACLE则直接找到=3的记录索引。  LIKE  LIKE可以应用通配符查询,里面的通配符组合可能达到几乎是任意的查询,但是如果用得不好则会产生性能上的问题,如LIKE ‘%5400%’ 这种查询不会引用索引,而LIKE ‘X5400%’则会引用范围索引。性能肯定大大提高。  UNION  SQL在运行时先取出数个查询的结果,再用排序空间进行排序删除重复的记录,最后返回结果集,如果表数据量大的话可能会导致用磁盘进行排序。  实际大部分应用中是不会产生重复的记录,推荐采用UNION ALL操作符替代UNION,因为UNION ALL操作只是简单的将两个结果合并后就返回。  Exists 示例:当有 A、B 两个结果集,当结果集 B 很大时,A 较小时,适用 exists,如: SELECT * FROM a WHERE EXISTS(SELECT 1 FROM b WHERE a.COLUMN = b.COLUMN); 当结果集 A 很大时,B 很小时,适用 in,如: SELECT * FROM a WHERE a.COLUMN IN(SELECT b.COLUMN FROM b) 1.4 SQL书写的影响  同一功能同一性能不同写法SQL的影响  Select * from zl_yhjbqk  Select * from dlyx.zl_yhjbqk(带表所有者的前缀)  Select * from DLYX.ZL_YHJBQK(大写表名)  Select * from DLYX.ZL_YHJBQK(中间多了空格)  以上四个SQL在ORACLE分析整理之后产生的结果及执行的时间是一样的,但是从ORACLE共享内存SGA的原理,可以得出ORACLE对每个SQL 都会对其进行一次分析,并且占用共享内存,如果将SQL的字符串及格式写得完全相同则ORACLE只会分析一次,共享内存也只会留下一次的分析结果,这不仅可以减少分析SQL的时间,而且可以减少共享内存重复的信息,ORACLE也可以准确统计SQL的执行频率。  WHERE后面的条件顺序影响  Select * from zl_yhjbqk where dy_dj = '1KV以下' and xh_bz=1  Select * from zl_yhjbqk where xh_bz=1 and dy_dj = '1KV以下'  以上两个SQL中dy_dj(电压等级)及xh_bz(销户标志)两个字段都没进行索引,所以执行的时候都是全表扫描,第一条SQL的dy_dj = '1KV以下'条件在记录集内比率为99%,而xh_bz=1的比率只为0.5%,在进行第一条SQL的时候99%条记录都进行dy_dj及xh_bz的比较,而在进行第二条SQL的时候0.5%条记录都进行dy_dj及xh_bz的比较,以此可以得出第二条SQL的CPU占用率明显比第一条低。  查询表顺序的影响  在FROM后面的表中的列表顺序会对SQL执行性能影响,在没有索引及ORACLE没有对表进行统计分析的情况下ORACLE会按表出现的顺序进行链接,由此因为表的顺序不对会产生十分耗服务器资源的数据交叉。(注:如果对表进行了统计分析,ORACLE会自动先进小表的链接,再进行大表的链接)  对条件字段的一些优化  采用函数处理的字段不能利用索引,如: substr(hbs_bh,1,4)=’5400’,优化处理:hbs_bh like ‘5400%’ trunc(sk_rq)=trunc(sysdate), 优化处理: sk_rq>=trunc(sysdate) and sk_rq<trunc(sysdate+1)  进行了显式或隐式的运算的字段不能进行索引,如: ss_df+20>50,优化处理:ss_df>30 ‘X’||hbs_bh>’X5400021452’,优化处理:hbs_bh>’5400021542’ sk_rq+5=sysdate,优化处理:sk_rq=sysdate-5 hbs_bh=5401002554,优化处理:hbs_bh=’ 5401002554’ 注:此条件对hbs_bh 进行隐式的to_number转换,因为hbs_bh字段是字符型  条件内包括了多个本表的字段运算时不能进行索引,如: ys_df>cx_df,无法进行优化 qc_bh||kh_bh=’5400250000’,优化处理:qc_bh=’5400’ and kh_bh=’250000’  HINT  是在ORACLE产生的SQL分析执行路径不满意的情况下要用到的。它可以对SQL进行以下方面的提示  目标方面的提示:  COST(按成本优化)  RULE(按规则优化)  CHOOSE(缺省)(ORACLE自动选择成本或规则进行优化)  ALL_ROWS(所有的行尽快返回)  FIRST_ROWS(第一行资料尽快返回)  执行方法的提示:  USE_NL(使用NESTED LOOPS方式联合)  USE_MERGE(使用MERGE JOIN方式联合)  USE_HASH(使用HASH JOIN方式联合)  索引提示:  INDEX(TABLE INDEX)(使用提示的表索引进行查询)  其它高级提示(如并行处理等等) 1.5 索引的规则: 建立索引常用的原则如下: 1. 表的主键、外键必须有索引 2. 数据量超过 1000 行的表应该有索引 3. 经常与其它表进行连接的表,在边接字段上应建立索引 4. 经常出现在 where 子句中的字段且过滤性极强的,特别是大表的字段,应该建立索引 5. 索引字段,尽量避免值为 null 6. 复合索引的建立需要仔细分析;尽量考虑用单字段索引代替:  正确选择复合索引中的第一个字段,一般是选择性较好的且在 where 子句中常的字段上。  复合索引的几个字段是否经常同时以and方式出现在where子句中?单字段查询是否极少甚至没有?如果是,则可以建立复合索引;否则考虑单字段索引。  如果复合索引中包含的字段经常单独出现在 where 子句中,则分解为多个单字段索引。  如果复合索引所包含的字段超过 3 个,那么仔细考虑其必要性,考虑减少复合的字段。  如果既有单字段索引,又有这几个字段上的复合索引,一般可以删除复合索引; 7. 频繁 DDL 的表,不要建立太多的索引 8. 删除无用的索引,避免对执行计划造成负面影响 9. 让 SQL 语句用上合理的索引,合理让 SQL 语句使用索引的原则如下:  首先,看是否用上了索引,对于该使用索引而没有用上索引的 SQL 语句,应该想办法用上索引。  其次,看是否用上正确的索引了,特别复杂的 SQL 语句,当其中 where 子句包含多个带有索引的字段时,更应该注意索引的选择是否合理。错误的索引不仅不会带来性能的提高,相反往往导致性能的降低。  针对如何用上合理的索引,以 Oracle 数据中的例子进行说明:  任何对列的操作都可能导致全表扫描,这里所谓的操作包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等式的右边,甚至去掉函数。  避免不必要的类型转换,要了解“隐藏”的类型转换。  增加查询的范围,限制全范围的搜索。  索引选择性低,但资料分布差异很大时,仍然可以利用索引提高效率。  Oracle 优化器无法用上合理索引的情况下,利用 hint 强制指定索引。  使用复合索引且第一个索引字段没有出现在 where 中时,建议使用 hint 强制。 1.6 索引使用优化  建立Plan_Table CREATE TABLE PLAN_TABLE ( STATEMENT_ID VARCHAR2(30), TIMESTAMP DATE, REMARKS VARCHAR2(80), OPERATION VARCHAR2(30), OPTIONS VARCHAR2(30), OBJECT_NODE VARCHAR2(128), OBJECT_OWNER VARCHAR2(30), OBJECT_NAME VARCHAR2(30), OBJECT_INSTANCE NUMBER(38), OBJECT_TYPE VARCHAR2(30), OPTIMIZER VARCHAR2(255), SEARCH_COLUMNS NUMBER(38), ID NUMBER(38), PARENT_ID NUMBER(38), POSITION NUMBER(38), OTHER LONG )  Syntax 说明: explain plan set statement_id = user_define for select ... 将结果显示 SELECT LPAD(' ', 2 *(LEVEL - 1)) || operation op, options, object_name, POSITION FROM plan_table START WITH ID = 0 AND STATEMENT_ID = user_define CONNECT BY PRIOR ID = parent_id AND STATEMENT_ID = user_define  示例 如要测试下面SQL: SELECT c.short, a.cday, a.card_no, a.qty FROM sales.stockiohis a, sales.product_info b, sales.vendor c WHERE a.card_no = b.card_no AND b.vendorid = c.vendorid AND a.produce_no = '2007090001' AND a.CATEGORY = '10' AND a.iotype = '1' 新增文件:例 d:\mydoc\plan.sql '0001'为user_define为使用者自定义编号 EXPLAIN PLAN SET STATEMENT_ID = '0001' FOR SELECT 'X' FROM sales.stockiohis a ,sales.product_info b ,sales.vendor c WHERE a.card_no = b.card_no AND b.vendorid = c.vendorid AND a.produce_no = '2007090001' AND a.CATEGORY = '10' AND a.iotype = '1' / SET arraysize 1 SET line 100 COLUMN op format a40 COLUMN object_name format a20 COLUMN options format a20 SELECT LPAD(' ', 2 *(LEVEL - 1)) || operation op, options, object_name, POSITION FROM plan_table START WITH ID = 0 AND STATEMENT_ID = '0001' CONNECT BY PRIOR ID = parent_id AND STATEMENT_ID = '0001' / DELETE FROM plan_table WHERE STATEMENT_ID = '0001' / COMMIT / 结果 1.7 避免不必要的排序 说明:对查询结果进行排序会大大的降低系统的性能,group与union都会对数据作排序,要耗费较多的内存,视状况用union all既可,不然有时数据太大又要进行union的排序,会导致Oracle数据库SORT_AREA_SIZE不足发生系统错误。 1.8 对于数字型的Primary Key,建议用序列 sequence 产生。 说明:除非是单据的单号,要求必须是唯一,并且依据流水号不可以跳号,不然在大量交易的表格中,不在乎跳耗时,要取得唯一的Primary Key 建议使用Oracle Sequence这样速度会较快,而且不会有锁定(Lock)的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值