如何改善深层神经网络

对于深度学习,模型训练过程中可能会遇到一些问题,这些问题可能出自训练阶段,也可能出自测试阶段。训练阶段的问题主要是模型可能根本就train不出来,测试阶段的问题主要是过拟合的问题。对于不同的问题,我们采用不同的方法解决,解决方法如下图所示: 我们分别就训练阶段和测试阶段来看一下具体问题,及其解决...

2019-05-21 13:25:46

阅读数 4

评论数 0

机器学习算法的一般结构

1. 算法框架 跟把大象放进冰箱里一样,李宏毅老师将机器学习方法总结为三步,如下: 总结来说,就是如下三步: Define a set of function(Model) Goodness of function(Objective Function) Pick the best funct...

2019-05-13 17:48:02

阅读数 19

评论数 0

SVM的梯度下降解释及其算法比较

首先说明一点,SVM的算法原理和其它机器学习算法是一致的,其中引入了两个最核心的概念就是hinge loss和kernel trick,这篇本章主要结合这两个部分说明SVM。 ...

2019-05-13 16:18:27

阅读数 126

评论数 0

推荐系统之YouTube推荐算法中的召回策略

YouTube深度学习推荐系统论文

2019-05-08 17:40:32

阅读数 80

评论数 0

推荐系统中的常用评测指标

推荐系统中的评价指标有很多,下面来系统的总结一下,这些指标有的适用于二分类问题,有的适用于对推荐列表Topk的评价。 1、精确率、召回率、F1值 我们首先来看一下混淆矩阵,对于二分类问题,真实的样本标签有两类,我们学习器预测的类别有两类,那么根据二者的类别组合可以划分为四组,如下表所示: 上表即...

2019-05-07 19:11:14

阅读数 19

评论数 0

从后验概率到逻辑回归,从逻辑回归到神经网络

从后验概率到逻辑回归,从逻辑回归到神经网络 1. 后验概率 对于给定数据,我们首先假设数据是由某种分布产生的,这样,根据贝叶斯公式我们可以得到后验概率分布,将后验概率最大的类作为xxx的类输出。后验概率计算根据贝叶斯定理进行: (1)P(Y=ck∣X=x)=p(X=x∣Y=ck)P(Y=ck)∑k...

2019-05-07 13:52:07

阅读数 62

评论数 0

深度学习中的优化方法

深度学习中的优化方法: 以下内容会包括下面几种优化方法: Gradient Descent Adagrad Momentum RMSProP Adam 1. Gradient Descent 首先,Gradient Descent是我们最常用的优化方法,梯度下降的参数更新公式为: (1)θi=...

2019-05-06 13:54:07

阅读数 30

评论数 0

tf.nn.embedding_lookup函数的工作原理

tf.nn.embedding_lookup函数的工作原理 函数定义: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=Tr...

2019-05-01 15:04:43

阅读数 27

评论数 0

libsvm/libffm与dataframe格式相互转换

1. libsvm与dataframe格式相互转换 ## 将libsvm转为dataframe from sklearn.datasets import load_svmlight_file from pandas import DataFrame import pandas as pd X_t...

2019-04-29 18:23:24

阅读数 40

评论数 0

用户画像系统概述

1. 用户画像的概念 1.1 什么是用户画像? 用户画像是对现实世界中的用户的数学建模。 1.2 用户标签画像 用户标签画像是用标签标示方法来表示用户。 标签是某一种用户特征的符号表示; 用户画像是一个整体,各个维度不孤立,标签之间有联系; 用户画像可以用标签的集合来表示。 1.3 用户标签的...

2019-04-27 15:09:30

阅读数 139

评论数 0

Pandas实现Hive中的窗口函数

1、Hive窗口函数 我们先来介绍一下Hive中几个常见的窗口函数,row_number(),lag()和lead()。 row_number() 该函数的格式如下: row_Number() OVER (partition by 分组字段 ORDER BY 排序字段 排序方式asc/desc) ...

2019-04-26 12:52:57

阅读数 26

评论数 0

git常用操作

git常用操作 1、cd进入目录: 2、把当前目录变成git可以管理的仓库:git init 3、添加文件: 单个文件:git add readme.md 全部文件:git add -A 4、提交修改:git commit -m “一定要写备注” 5、查看是否还有未提交任务:git statu...

2019-04-25 16:46:56

阅读数 30

评论数 0

论文精读(一)——XGBoost:A Scalable Tree Boosting System

论文精读(一)——XGBoost:A Scalable Tree Boosting System

2019-04-21 14:36:40

阅读数 453

评论数 0

统计学习方法(7)前向分步算法推导AdaBoost的详细过程

由前向分步算法可以推导Adaboost,用定理叙述这一关系: 定理: AdaBoost算法是前向分步加法算法的特例。这时,模型是由基本分类器组成的加法模型,损失函数是指数函数。 证明: 前向分步算法学习的是加法模型,当基函数为基本分类器时,该加法模型等价于AdaBoost的最终分类器: f(x)=...

2019-04-19 17:25:23

阅读数 184

评论数 0

用GBDT构建组合特征

用GBDT构建组合特征

2019-04-13 19:42:28

阅读数 77

评论数 0

GBDT(sklearn/lightgbm)调参小结

GBDT(sklearn/lightgbm)调参小结 原理 参数选择 特征重要度

2019-04-13 19:37:36

阅读数 668

评论数 0

pycharm通过ssh连接远程服务器

由于想要使用pycharm连接Window子系统Ubuntu进行开发,找了很多教程都不够详细,花了点儿时间,最后配置成功。 将pycharm连接Window子系统的配置过程总结如下,连接其它远程服务器的过程相同: 一、Ubuntu配置 1、首先安装 ssh server: &amp...

2019-03-18 12:24:54

阅读数 117

评论数 0

ubuntu配置git工具

使用ubuntu,如果想从github上clone文件,需要做一些简单的配置,不然会出现如下错误: > git clone --recursive git@github.com:lujiaying/MovieTaster-Open.git Permission den...

2019-03-17 16:28:55

阅读数 129

评论数 0

关于python中的全局变量、局部变量及递归中的使用

本文主要总结python中的全局变量、局部变量和函数调用时的可变对象的使用: 1、关于全局变量和局部变量 (1)如果函数内无global关键字,优先读取局部变量,无局部变量则读取全局变量,不能对全局变量重新赋值。 name = 'jack' def change_name(): name...

2018-11-22 14:39:26

阅读数 370

评论数 0

关于二叉树的相关题目

\qquad二叉树在数据结构中具有十分重要的作用,很多算法题都使用到树的思想。将复杂的算法题转化为简单子问题,并用树的形式表示,可以直观理解划分的过程,有利于分析和写出算法程序。比如:对于递归问题,就可以转化成树的形式,将树的叶节点作为终止条件,将树的生成过程作为迭代公式,根据题目要求使用先序、中...

2018-11-20 22:11:11

阅读数 61

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭