概率论基础知识(一)概率论基本概念

概率论

0. 前言

本文主要旨在对概率论的基础概念与知识进行概要的总结,以便于使用到时可以参考。
概率论是数理统计的基础,也是很多机器学习模型的支撑,概率论在机器学习中占主要地位,因为概率论为机器学习算法的正确性提供了理论依据。


1. 概率论的基本概念
1.1 基本概念
随机实验(E)

(1)可以在相同的条件下重复地进行
(2)每次实验的可能结果不止一个,并且事先明确知道实验的所有可能结果
(3)每次试验将出现哪一个结果无法预知
例子:抛一枚硬币,观察正面,反面出现的情况

样本空间 (Ω)

随机试验所有可能的结果组成的集合

样本点

样本空间的元素,即每个可能的结果

随机事件

随机试验E的样本空间S的子集称为随机事件

基本事件

样本空间的单个元素,一个可能结果构成的集合

必然事件(全集)、不可能事件(空集)
事件的关系与事件的运算 (类似于集合运算)

包含关系、和(并)并事件、积(交)事件、差事件、互不相容(互斥)、逆事件(对立事件)
这里写图片描述

运算规律

1、交换律:
A ∪ B = B ∪ A A∪B = B∪A AB=BA
A ∩ B = B ∩ A A ∩ B = B ∩ A AB=BA
2、 结合律:
A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A∪ (B∪ C) = (A∪ B) ∪ C A(BC)=(AB)C
A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A ∩ (B ∩ C)=(A ∩ B) ∩ C A(BC)=(AB)C
3、分配律:
A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A∪ (B ∩ C) = (A∪ B) ∩ (A ∪ C) A(BC)=(AB)(AC)
A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A ∩ (B∪C) = (A ∩ B) ∪ (A ∩ C) A(BC)=(AB)(AC)
A ∩ ( B − C ) = ( A ∩ B ) − ( A ∩ C ) A ∩ (B - C) = (A ∩ B) - (A ∩ C) A(BC)=(AB)(AC)
4、德摩根律(对偶律):
A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A ∪ B} = \overline{A} ∩ \overline{B} AB=AB
A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A ∩ B} = \overline{A} ∪ \overline{B} AB=AB
常用结论:
A A ‾ = Φ A\overline{A} = Φ AA=Φ A ∪ A ‾ = Ω A∪\overline{A} = Ω AA=Ω
A ∪ B = A + B − A B = ( A − B ) + ( B − A ) + A B A ∪ B = A+ B − AB = (A − B) + (B − A) + AB AB=A+BAB=(AB)+(BA)+AB


1.2 频率与概率
频率

定义:在相同条件下,进行n次试验,在这n次试验中,事件A发生的次数,称为事件A发生的频数,比值:f = 频数/试验次数,称为事件A发生的频率。
基本性质:
(1)0 <= f <= 1 ;
(2)f(Ω) = 1;
(3)两两互不相融事件的可列可加性。
稳定性:当试验重复次数很大时,频率趋于稳定,可以用来表征事件A发生可能性的大小。

概率

定义: 设E是随机试验,样本空间为Ω,对于E的每一个事件A赋予一个实数,记为P(A),称为A的概率。
性质:
(1)非负性 0 =< P(A) <= 1;
(2)正则性 P(Ω) = 1;
(3)可列可加性 若有互不相容的事件: A 1 , A 2 , A 3 , . . . A_1, A_2, A_3, ... A1,A2,A3,...
\quad\quad P ( ∪ A j ) = ∑ P ( A j ) P(∪A_j) = ∑ P(A_j) P(Aj)=P(Aj)


1.3 等可能概型(古典概型)

设E是一个试验,满足:(1)只有有限多个样本点;(2)每个样本点发生的可能性相同(等可能性)。
典型例子:抛硬币
长期实践的发现:“概率很小的事件在一次试验中几乎是不发生”(称之为实际推理原理)

排列
排列:从n个不同元素中,任取m(m ≤ n,m与n均为自然数)个元素按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。
排列数: A n m = n ( n − 1 ) ( n − 2 ) … … ( n − m + 1 ) = n ! ( n − m ) ! A_n^m = n(n-1)(n-2)……(n-m+1) = {n!\over(n-m)!} Anm=n(n1)(n2)(nm+1)=(nm)!n!
组合
组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。
组合数: C n m = A ( n , m ) m ! C_n^m = {A(n,m) \over m!} Cnm=m!A(n,m)
公式:
C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm
C n m + C n m − 1 = C n + 1 m C_n^m + C_n^{m-1} = C_{n+1}^m Cnm+Cnm1=Cn+1m
C n 0 + C n 1 + . . . + C n n = 2 n = ( 1 + 1 ) n C_n^0 + C_n^1 + ... + C_n^n = 2^n = (1 + 1)^n Cn0+Cn1+...+Cnn=2n=(1+1)n

例1:
袋子中有a个黑球,b个白球,先一只只地摸出来,求:第k次摸到黑球的概率(1<= k <= a+b)
解法1:(排列)
思路:
样本空间为a+b个球的全排列,有利场合为第k个球确定为黑球,有a种可能,然后剩下a+b-1个球随机排列。
样本空间:(a+b)!
有利场合:a×(a+b-1)!
故:
P = a × ( a + b − 1 ) ! ( a + b ) ! = a a + b P = {a×(a+b-1)! \over (a+b)!} = {a \over a+b} P=(a+b)!a×(a+b1)!=a+ba
解法2:(组合)
思路:
样本空间为从a+b个格子中选取a个放置黑球,其余一定放白球,故为 C a + b a C^a_{a+b} Ca+ba;有利场合为第k个确定放置黑球,从剩下a+b-1个格子中选取a-1个格子放置剩下的黑球,其余放白球,故为 C a + b − 1 a − 1 C^{a-1}_{a+b-1} Ca+b1a1
样本空间: C a + b a C^a_{a+b} Ca+ba
有利场合: C a + b − 1 a − 1 C^{a-1}_{a+b-1} Ca+b1a1
故:
P = C a + b − 1 a − 1 C a + b a = a a + b P = {C^{a-1}_{a+b-1} \over C^a_{a+b}} = {a \over a+b} P=Ca+baCa+b1a1=a+ba
PS:这个例子就是抽签模型

例2:
设有n个球,每个都可以以同样的概率 1 n 1\over n n1落到N个格子的每一个格子中(N>=n),求:
(1)某指定的n个格子中各有一个球的概率P(A);
(2)任何n个格子中各有一个球的概率P(B);
解:
样本空间: N n N^n Nn
P ( A ) = n ! N n P(A) = {n! \over N^n} P(A)=Nnn!
P ( A ) = C N n &ThickSpace; ⋅ &ThickSpace; n ! N n = N ! N n &ThickSpace; ⋅ &ThickSpace; ( N − n ) ! P(A) = {C^n_N \; · \; n! \over N^n} = {N! \over N^n \; · \; (N-n)! } P(A)=NnCNnn!=Nn(Nn)!N!
PS:这个模型可用于计算具有相同生日的人的概率


1.4 条件概率

(1)条件概率:
设有两个事件A和B, P ( A ) ≠ 0 P(A)\neq0 P(A)̸=0,在已知A发生的条件下B发生的概率记为: P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = {P(AB) \over P(A)} P(BA)=P(A)P(AB);满足概率的三个基本性质。
乘法公式: P ( A B ) = P ( A ) P ( B ∣ A ) P(AB) = P(A)P(B|A) P(AB)=P(A)P(BA)
(2)全概率公式:
B 1 , . . . , B i , . . . , B n B1, ... ,Bi, ... , Bn B1,...,Bi,...,Bn Ω \Omega Ω的一个划分(完备事件组), B 1 ⋃ B 2 ⋃ . . . ⋃ B n = Ω , B i ⋂ B j = ∅ , i ≠ j , P ( B i ) &gt; 0 B_1 \bigcup B_2 \bigcup ... \bigcup B_n = \Omega, B_i \bigcap B_j = \emptyset, i \neq j, P(B_i) &gt; 0 B1B2...Bn=Ω,BiBj=,i̸=j,P(Bi)>0, 其中 i=1, 2, 3, …,得到:
全概率公式: P ( A ) = P ( A Ω ) = P ( A ⋂ ( B 1 ⋃ B 2 ⋃ . . . ⋃ B n ) ) = P ( A B 1 ⋃ A B 2 . . . ⋃ A B n ) = ∑ i = 1 n P ( A B i ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A) = P(A\Omega) = P(A\bigcap(B_1 \bigcup B_2 \bigcup ... \bigcup B_n)) = P(AB_1 \bigcup AB_2... \bigcup AB_n) = \sum_{i=1}^n {P(AB_i)} = \sum_{i=1}^n P(B_i)P(A|B_i) P(A)=P(AΩ)=P(A(B1B2...Bn))=P(AB1AB2...ABn)=i=1nP(ABi)=i=1nP(Bi)P(ABi)
PS:把一个要求的事件( Ω \Omega Ω)分解成若干个互不相容的事件( B i B_i Bi)。
(3)贝叶斯公式:
贝叶斯公式: P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( B i ) P ( A ∣ B i ) ( P ( A ∣ B 1 ) + . . . + P ( A ∣ B i ) + . . . + P ( A ∣ B n ) ) = P ( B i ) P ( A ∣ B i ) ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(B_i|A) = {P(B_iA)\over P(A)} = {P(B_i)P(A|B_i) \over (P(A|B_1) + ... + P(A|B_i) + ...+ P(A|B_n))} = {P(B_i)P(A|B_i) \over \sum_{i=1}^n P(B_i)P(A|B_i)} P(BiA)=P(A)P(BiA)=(P(AB1)+...+P(ABi)+...+P(ABn))P(Bi)P(ABi)=i=1nP(Bi)P(ABi)P(Bi)P(ABi)
其中: P ( A ) &gt; 0 , P ( B i ) &gt; 0 P(A) &gt; 0, P(B_i) &gt; 0 P(A)>0,P(Bi)>0
PS: P ( B i ) P(B_i) P(Bi)是先验概率,在实际应用中是经验的总结、信息的归纳;
&ThickSpace; \;\quad P ( B i ∣ A ) P(B_i|A) P(BiA)是后验概率,表示在事件(A)发生后对各种原因 B i B_i Bi发生可能性的分析;

例:
用某检验法诊断肺癌,A:被检验者患有肺癌;B:检验诊断为阳性(患病);
已知: P ( B ∣ A ) = 0.95 , P ( B ‾ ∣ A ‾ ) = 0.90 , P ( A ) = 0.0004 P(B|A)=0.95,P(\overline{B}|\overline{A})=0.90,P(A) = 0.0004 P(BA)=0.95P(BA)=0.90P(A)=0.0004
求:P(A|B)
解:
P ( A ∣ B ) = P ( A ) P ( B ∣ A ) P ( A ) P ( B ∣ A ) + P ( A ‾ ) P ( B ∣ A ‾ ) = 0.0004 × 0.95 0.0004 × 0.95 + 0.9996 × 0.1 = 0.0038 P(A|B) = {P(A)P(B|A) \over P(A)P(B|A) + P(\overline A)P(B|\overline A)} = {0.0004×0.95 \over 0.0004×0.95 + 0.9996×0.1} = 0.0038 P(AB)=P(A)P(BA)+P(A)P(BA)P(A)P(BA)=0.0004×0.95+0.9996×0.10.0004×0.95=0.0038


1.5 独立性

独立性是概率论和数理统计中很重要的概念,很多情况需要满足独立性才适用,一般根据实践来确定事件之间是否相互独立。
定义:设A、B是随机试验E的两个事件,若 P(AB) = P(A)P(B), 则称AB事件相互独立,即A和B两个事件的发生互不影响。
定理1:若P(A) > 0 ,且 P(B|A) = P(B) 等价于 AB相互独立
定理2:若A、B相互独立,则其对立事件也相互独立
可以很自然的推广到n个事件的情况

例:
甲、乙两种产品独立生产,甲产品的次品率0.05,乙产品的次品率0.04,现从甲乙产品中各区一件:
(1)两件都是次品的概率P1;
(2)至少有一件是次品的概率P2;
(3)恰好有一件是次品的概率P3。
解:
设A事件为抽取甲为次品,B事件为抽取乙为次品
由于A、B相互独立,故:A, A ‾ \overline{A} A A ‾ \overline{A} A,B; A ‾ \overline{A} A B ‾ \overline{B} B;相互独立
(1) P 1 = P ( A B ) = P ( A ) ⋅ P ( B ) = 0.05 × 0.04 = 0.002 P1=P(AB)=P(A)·P(B)=0.05×0.04=0.002 P1=P(AB)=P(A)P(B)=0.05×0.04=0.002
(2) P 2 = P ( A ⋃ B ) = 1 − P ( A ⋃ B ‾ ) = 1 − P ( A ‾ B ‾ ) = 1 − P ( A ‾ ) P ( B ‾ ) = 1 − 0.95 × 0.96 = 0.088 P2=P(A \bigcup B)=1-P(\overline{A\bigcup B})=1-P(\overline{A}\overline{B})=1-P(\overline{A})P(\overline{B})=1-0.95×0.96=0.088 P2=P(AB)=1P(AB)=1P(AB)=1P(A)P(B)=10.95×0.96=0.088
(3) P 3 = P ( A B ‾ ⋃ A ‾ B ) = P ( A B ‾ ) + P ( A ‾ B ) = P ( A ) P ( B ‾ ) + P ( A ‾ ) P ( B ) = 0.86 P3=P(A\overline{B}\bigcup \overline{A}B)=P(A\overline{B})+P(\overline{A}B)=P(A)P( \overline{B})+P(\overline{A})P(B)=0.86 P3=P(ABAB)=P(AB)+P(AB)=P(A)P(B)+P(A)P(B)=0.86
PS:独立性和互不相容性
(1)加法公式对应互不相容性;
(2)乘法公式对应独立性;


1.6 蒙特霍尔三门问题

游戏规则:

  • 参赛者会看见三扇关闭的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,另两扇门后则各藏有一只山羊。
  • 当参赛者选定了一扇门,但未去开启它的时候,知道门后情形的节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。
  • 主持人其后会问参赛者要不要换另一扇仍然关上的门。

概率求解(python实现):

import random

def MontyHall(Dselect, Dchange):
    Dcar = random.randint(1,3)
    if Dselect == Dcar and Dchange == 0:
        return 1
    elif Dselect == Dcar and Dchange == 1:
        return 0
    elif Dselect != Dcar and Dchange == 0:
        return 0
    else:
        return 1

# 不确定是否改变选择
def test1(N):
	win = 0
	for i in range(N):
	    Dselect = random.randint(1,3)
	    Dchange = random.randint(0,1)
	    win = win + MontyHall(Dselect, Dchange)
	print(float(win)/float(N))

# 确定不改变选择
def test2(N):
	win = 0
	for i in range(N):
	    Dselect = random.randint(1,3)
	    Dchange = 0
	    win = win + MontyHall(Dselect, Dchange)
	print(float(win)/float(N))

# 确定改变选择
def test3(N):
	win = 0
	for i in range(N):
	    Dselect = random.randint(1,3)
	    Dchange = 1
	    win = win + MontyHall(Dselect, Dchange)
	print(float(win)/float(N))

N = 10000
print("不确定是否改变选择概率:")
test1(N)
print("确定不改变选择概率:")
test2(N)
print("确定改变选择概率:")
test3(N)

运行结果:

不确定是否改变选择概率:
0.4939
确定不改变选择概率:
0.3307
确定改变选择概率:
0.6618

1.7 蒙特卡罗方法
  • 蒙特卡罗方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
  • 使用随机数(通常是伪随机数)来解决计算问题的方法。
  • 蒙特卡罗方法在金融工程学,宏观经济学,计算物理学等领域应用广泛。
# 计算$\pi$的蒙特卡洛方法
import random

n=1000000
k=0
for i in range(n):
    x=random. uniform(-1,1)
    y=random. uniform(-1,1)
    if x**2+y**2<1:
        k=k+1
print(4* float(k)/float(n))

运行结果:

3.142032
  • 55
    点赞
  • 279
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《概率论基础教程第10版PDF》是一本关于概率论基础知识的教材。本书的PDF版意味着它可以通过电子阅读器或计算机等设备来阅读。 该教程以概率论基础知识为主线,通过例题和习题来帮助读者掌握概率论的基本理论和方法。它涵盖了概率的基本概念、概率密度函数、随机变量、常见概率分布以及概率的运算规则等内容。 在这本教程中,读者将学习到如何计算事件发生的概率、如何利用概率密度函数描述随机变量的分布、如何计算随机变量的期望和方差等重要概念。通过理论讲解和实例演示,读者将逐步了解概率论的基本原理和方法。 《概率论基础教程第10版PDF》作为一本教材,它的优点是系统全面地介绍了概率论基础知识,能够帮助读者建立起对概率论的基本认识和理解。此外,它还包含了大量的例题和习题,有助于读者巩固所学内容并提高解题能力。 总之,《概率论基础教程第10版PDF》是一本很好的概率论教材,它适合对概率论感兴趣的读者学习和参考。无论是在学术研究、数据分析还是其他应用领域,概率论基础知识都具有重要的作用,而这本教程将为读者打下坚实的基础。 ### 回答2: 《概率论基础教程第10版pdf》是一本介绍概率论基础知识的教材,通过阅读这本书,可以帮助读者建立起概率论基本概念和理论框架。 该教程的第10版是对概率论基础知识的最新总结和更新,内容包括概率的基本概念、随机变量、概率分布、数学期望、方差、协方差、概率论的极限定理等。通过学习这些内容,读者可以了解概率论基础原理,以及如何应用概率论解决实际问题。 此外,该教程还提供了大量的例题和习题,帮助读者巩固所学的知识,并通过实际操作培养读者的解决问题的能力。同时,教程还注重理论与实践的结合,引入了一些实际应用的案例,帮助读者将概率论应用到实际生活和研究中。 总之,《概率论基础教程第10版pdf》是一本系统、全面、易于理解的概率论教材,适合初学者学习使用。通过学习这本教材,读者可以建立概率论的基本知识体系,为进一步学习和研究概率论打下坚实的基础
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值