Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
#include<iostream>
using namespace std;
int f(int A, int B,int n)
{
if(n==1 || n==2)
return 1;
else
return (A*f(A,B,n-1)+B*f(A,B,n-2))%7;
}
int main()
{
int a,b,n;
while(cin>>a>>b>>n,a||b||n)
{
cout<<f(a,b,n%49)<<endl;
}
return 1;
}
注意:如果用f(a,b,n)会出现栈溢出,考虑f(n)=Af(n-1)+Bf(n-2)
由于f(n)是由前两个数字组合产生,那么只要有两个数字组合相同的情况发生就一定一会产生循环!两个数字的组合的最大可能值为7x7=49,因此只要在调用迭代方法中限制n的在0~48就可以了