4-3优化器

常用的优化器:

假定:W指的是权值、偏执这些参数

(1)SGD

 

(2)Momentum

当前权值的改变Vt会受到上一次权值改变Vt-1的影响,当Vt-1越来越大时,Vt(存了上一次梯度)也越来越大,梯度W下降地越来越快。类似于小球向下滚动时带上了惯性,加快小球的向下滚动的速度。

(3)NAG

把第一式子中Vt代入代入第二个式子,看出W=W-...-...,跟W-...很像,所以可以用那个表是小球下一个位置大概(大概很重要)在哪里,从而提前计算下一个位置的梯度,用到当前位置。

(4)Adagrad

第一次抽到一张狗的图片,会保留计算的梯度,第二次,第三次,第四次继续抽到狗的图片,那么W更新的那个分母会越来越小。如果抽到大象,分母会改变成大象这一类的梯度之和。

 

 

(5)RMSprop

跟Adagrad很像,但是不会出现学习率越来越低的问题,因为RMSprop只用到了前t-1次梯度,还是取平均,不会一直减小接近于0或者说减小的速度远远低于Adagrad,而Adagrad直接求和。同时可以自动调节学习率。

(6)Adadelta

RMS[得尔塔W]t-1表示对 前t次 得尔塔W求均方根,RMS[g]t表示对前t次梯度求均方根,我也不知道这东西有什么提出的意义...

 

 

(7)Adam

注意:通常SGD收敛速度最慢,而且容易陷入鞍点问题(局部极小值)跳不出来,但是准确率高啊。网络模型不能仅仅考虑收敛速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值