1 定义
算法是对特定问题求解步骤的一种描述。不依赖于任何一种语言,既可以用自然语言、程序设计语言描述,也可以用流程图、框图来表示。
本质是高效地解决实际问题。
2 特性
- 有穷性:算法是由若干条指令组成的有穷序列,总是在执行若干次后结束,不可能永不停止。
- 确定性:每条语句都有确定的含义,无歧义。
- 可行性:算法在当前环境条件下可以通过有限次运算来实现。
- 输入/输出:有零个或多个输入以及一个或多个输出。
3 评判标准
- 正确性:正确性是指算法能够满足具体问题的需求,程序运行正常,无语法错误,能够通过典型的软件测试,达到预期。
- 易读性:算法遵循标识符命名规则,简洁易懂,注释语句恰当适量,方便自己和他人阅读,便于后期调试和修改。
- 健壮性:算法对非法数据及操作有较好的反应和处理。例如:输错时,系统有错误提示。
- 高效性:高效性是指算法运行效率高,即算法运行所消耗的时间短。(时间复杂度)
- 低存储性:低存储性是指算法所需的存储空间小。算法占用的空间大小被称为空间复杂度。
1、2、3是基本标准,除此之外时间复杂度与空间复杂度是评判主要标准
4 时间复杂度
算法的时间复杂度就是算法运行所需的时间。
时间复杂度的衡量标准:算法基本运算的执行次数(也就是程序执行次数)。
4.1 分类
- 常数阶:
常数阶算法的运行次数是一个常数,如5、20、100。常数阶算法的时间复杂度通常用O(1)表示
int a=1,b=2,sum=0;//执行了一次
sum=a+b;//执行了一次
sum= sum+a+b; //执行了一次
每个语句都执行了一次,则函数f(n)=3,用大O表示就是O(3),但在表示时间复杂度时,如果遇到的是常数,则用常数1代替运行中所有的其他常数,于是,上面这个程序的时间复杂度记为O(1)。
- 多项式阶:
很多算法的时间复杂度是多项式,通常用О(n)、O(n^2)等表示
int sum=0; //运行1次
int total=0; //运行1次
for(int i=1;i<=n;i++){ //运行n+1次,最后一次判断不满足循环条件
sum=sum+i; //运行n次
for(j=1;j<=n;j++) //运行n×(n+1)次
total=total+i*j; //运行n×n次
}
运行次数加起来:1+1+n+1+n+n*(n+1)+n*n = 2n^2+3n+3
该程序的时间复杂度记为O(n^2)
-
指数阶:
指数阶算法的运行效率极差,程序员往往像躲“恶魔”一样避开这种算法。指数阶算法的时间复杂度通常用O(2^n) ,O(n!),O(n^n)等表示。 -
对数阶:
对数阶算法的运行效率较高,通常用O(log n),O(nlog n)等表示。
i=1; //运行1次
while(i<=n){ //可假设运行x次
i=i*2; //可假设运行x次
}
运行1次:i=2^1,在判断完i<n时候才结束;
运行2次:i=2^2;
……
运行x次:i=2^x。
运行第x次便是i=n时,于是n=2^x,解得:x=log2n。
通常,我们在算出并写对数复杂度时,把底数2或者其他数值省略,仅表明这是个对数便可以了,于是上面的代码时间复杂度为O(log2n)/O(logn),这便是对数阶。
指数阶增量随着的增加而急剧增加,而对数阶增长缓慢。它们之间的关系如下:
O(1)<O(log n)<O(n)<O(nlog n)<O(n^2) <O(n^3) <O(2^n) <O(n!)<O(n^n)
在实际应用中,通常使用时间复杂度渐近上界 O(f(n))来表示时间复杂度。
综上,我们可以总结出分析时间复杂度的基本方法:
1、找出执行频度最多的那条语句作为基本语句;(循环语句中处在循环内层的语句往往运行次数最多,它们是对运行时间贡献最大的语句)
2、根据找出来的基本语句得出规模n的某个函数f(n);
3、算出数量级,用大O表示法表示出来。
在设计算法时,我们要注意算法复杂度增量的问题,尽量避免爆炸级增量。
5 空间复杂度
空间复杂性:算法占用空间的大小
本意指算法在运行过程中占用的存储空间。包括:算法自身、算法的输入、输出及额外需要的辅助空间。
输入/输出数据占用的空间是必需的,算法本身占用的空间可以通过精简算法来缩减,但缩减的量是很小的,可以忽略不计。算法在运行时所使用的辅助变量占用的空间(即辅助空间)才是衡量算法空间复杂度的关键因素。
void swap(int x,int y){ //交换x与y
int temp;
temp=x; //temp为辅助空间 ①
x=y; //②
y=temp; //③
}
两数字的交换过程
空间复杂度为O(1)
在递归算法中,每一次递推都需要一个栈空间来保存调用记录,因此在分析算法的空间复杂度时,需要计算递归栈的辅助空间。