百行代码教你了解何为神经网络

神经网络解方程

神经网络参见知乎大神的回答:http://www.zhihu.com/question/22553761#

摘抄部分内容如下:

就举一个简单的例子:区分苹果和橘子。

1.问题:人为什么能判断正确?

1.人的大脑就是一个牛逼的神经网络,通过从小的训练,见识,并且记住了苹果和橘子,我们分分钟能作出判断哪一个是苹果,哪一个是橘子(可能就是百分之百),即使我们蒙住了人的眼睛,我们还是可以通过气味,重量,手感做出较为准确的判断(但是可能不能完全判断正确).说到底就是人从小开始第一次见到苹果,橘子时,就不断的强化,记忆他们的特点,并且做出判断!有这么个大脑以后,通过直观的比方说颜色,我们就可以区分,颜色涂成一样,好,那我们依靠重量,重量等重,那我们依靠气味,气味也掩盖,那我们依靠密度。。。。。。。。。

2.计算机是死的,不是人,怎样达到人的水平或者模拟人的水平?

神经网络粉墨登场,初始的神经网络啥用都没有,智商为零。我们想让他区分苹果和橘子,对不起,你还不如去问问木头!由此我们想到人类区分的过程是不断强化,记忆(也就是训练大脑),然后就能区分(做出判断).好嘛!对一个神经网络(大脑),我们做同样的处理.先拿一堆的橘子和苹果,告诉它哪些是橘子,哪些是苹果(妈妈教你),这称之为训练.然后,再哪一个东东出来,让它判断是橘子还是苹果(做出判断),大事不好,神经网络判断错误了?别急,妈妈不会打你,不会骂你,错了就记住,再训练,强化!

3.问题还有,一大堆橘子,苹果,计算机怎么强化,记忆,计算机只认识数字,谁知道你这是什么怪物?

好,为了让计算机知道啥是橘子,啥是苹果,我们必须将橘子和苹果的特点变成数字(特征提取),送入到计算机里面去,让他记忆(训练).再把未知是什么东西的东东的特点变成数字送入计算机中让计算机做出判断(效应).颜色,我们用0~255来表示从黑到白,重量,我们用秤来秤嘛,气味,我们测算芳香因子的数量,密度,好吧,质量除以体积。。。。。。苹果我们用1表示,橘子我们用-1表示,为什么呢?前面我们说了,训练的时候,我们要告诉计算机什么是苹果,什么是橘子,用嘴和计算机说嘛?当然是数字啊,少年,没错就是国际惯例1和-1,接下来,我们将这些知道类别的数据送入计算机让他记住,再来一个不知道类别的东东,提取出上面的特点,我们就能判断出是橘子还是苹果了!

4.问题又来了,计算机怎么记住?

(非常浅显,专业人士一看就是不对的,还有很多别的条件没有提到)数据送进来,好嘛,神经网络来了,以苹果为例(用1标记),苹果的特点一串数字,我们用x表示,苹果的类别1,也就是这个网络最后要得到的效果就是x通过网络后就变成了1,数学上就是x*w = 1,好嘛解个方程就完了!(如果是多层呢?x*w1*w2*….wn=1,当然还会有更多的已知量给你哈!)解出方程得到w,后面再送入一个未知是啥的东东的特征数字,乘以w,就知道类别!橘子和苹果就区分出来!每一个步骤都有很多方法,很多内容可以挖掘,甚至很多步骤已经成为了一门专门的领域了!


百行代码教你了解何为神经网络

using System;
using System.Collections.Generic;

namespace SolvingFunction
{
    public class Param
    {
        public int x;
        public int y;
    }

    public class MainClass
    {
        static List<Param> InputList = new List<Param> ();
        const int MaxParam_A = 10;
        const int MaxParam_B = 10;
        const int MaxParam_C = 10;

        static int A,B,C;

        public static void Main (string[] args)
        {
            AddInput ();
            GetParams ();
            Console.WriteLine ("a=" + A + ",b=" + B + ",c=" + C);
            Console.WriteLine ("input x=1,get y=> "+(1-A*1-C)/B);
        }

        static void AddInput()
        {
            Param oneParam = new Param ();
            oneParam.x = 0;
            oneParam.y = -1;
            InputList.Add (oneParam);

            Param oneParam2 = new Param ();
            oneParam2.x = -4;
            oneParam2.y = 1;
            InputList.Add (oneParam2);
        }

        static void GetParams()
        {
            for (int a = 1; a < MaxParam_A; ++a) {
                for (int b = 1; b < MaxParam_B; ++b) {
                    for (int c = 0; c < MaxParam_C; ++c) {
                        if (ParamIsRight (a, b, c)) {
                            A = a;
                            B = b;
                            C = c;
                            return;
                        }
                    }
                }
            }
        }

        static bool ParamIsRight(int a,int b,int c)
        {
            for(int i=0;i<InputList.Count;++i)
            {
                var result = a * InputList [i].x + b * InputList [i].y + c-1;
                if (result != 0)
                    return false;
            }
            return true;
        }
    }
}

运行结果如下

这里写图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
# GPF ## 一、GPF(Graph Processing Flow):利用图神经网络处理问题的一般化流程 1、图节点预表示:利用NE框架,直接获得全图每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子图:可做类化处理,建立一种通用图数据结构; 4、子图特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是图输入、图输出的网络;也可以是图输入,分类/聚类结果输出的网络; 6、训练和测试; ## 二、主要文件: 1、graph.py:读入图数据; 2、embeddings.py:预表示学习; 3、sample.py:采样; 4、subgraphs.py/s2vGraph.py:抽取子图; 5、batchgraph.py:子图特征融合; 6、classifier.py:网络配置; 7、parameters.py/until.py:参数配置/帮助文件; ## 三、使用 1、在parameters.py中配置相关参数(可默认); 2、在example/文件夹中运行相应的案例文件--包括链接预测、节点状态预测; 以链接预测为例: ### 1、导入配置参数 ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、参数转换 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、读取数据 ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、获取全图节点的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正负节点采样 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取节点对的封闭子图 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加载网络模型,并在classifier中配置相关参数 ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` ### 8、训练和测试 ``` train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1], test_loss[2])) ``` ### 9、运行结果 ``` average test of epoch 0: loss 0.62392 acc 0.71462 auc 0.72314 loss: 0.51711 acc: 0.80000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.09batch/s] average training of epoch 1: loss 0.54414 acc 0.76895 auc 0.77751 loss: 0.37699 acc: 0.79167: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.07batch/s] average test of epoch 1: loss 0.51981 acc 0.78538 auc 0.79709 loss: 0.43700 acc: 0.84000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.64batch/s] average training of epoch 2: loss 0.49896 acc 0.79184 auc 0.82246 loss: 0.63594 acc: 0.66667: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 2: loss 0.48979 acc 0.79481 auc 0.83416 loss: 0.57502 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.70batch/s] average training of epoch 3: loss 0.50005 acc 0.77447 auc 0.79622 loss: 0.38903 acc: 0.75000: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.03batch/s] average test of epoch 3: loss 0.41463 acc 0.81132 auc 0.86523 loss: 0.54336 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.57batch/s] average training of epoch 4: loss 0.44815 acc 0.81711 auc 0.84530 loss: 0.44784 acc: 0.70833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 4: loss 0.48319 acc 0.81368 auc 0.84454 loss: 0.36999 acc: 0.88000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.17batch/s] average training of epoch 5: loss 0.39647 acc 0.84184 auc 0.89236 loss: 0.15548 acc: 0.95833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 5: loss 0.30881 acc 0.89623 auc 0.95132 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值