BZOJ 2351 [BeiJing 2011] 字符串Hash 解题报告

2351: [BeiJing2011]Matrix

Description

给定一个M行N列的01矩阵,以及Q个A行B列的01矩阵,你需要求出这Q个矩阵哪些在原矩阵中出现过。
所谓01矩阵,就是矩阵中所有元素不是0就是1。

Input

输入文件的第一行为M、N、A、B,参见题目描述。
接下来M行,每行N个字符,非0即1,描述原矩阵。
接下来一行为你要处理的询问数Q。
接下来Q个矩阵,一共Q*A行,每行B个字符,描述Q个01矩阵。

Output

你需要输出Q行,每行为0或者1,表示这个矩阵是否出现过,0表示没有出现过,1表示出现过。

Sample Input

3 3 2 2
111
000
111
3
11
00
11
11
00
11

Sample Output

1
0
1

HINT

对于100%的实际测试数据,M、N ≤ 1000,Q = 1000
对于40%的数据,A = 1。
对于80%的数据,A ≤ 10。
对于100%的数据,A ≤ 100。

【解题报告】
行列Hash,子矩阵就用前缀的思想减去缀余部分就可以了

代码如下:

/**************************************************************
    Problem: 2351
    User: onepointo
    Language: C++
    Result: Accepted
    Time:2004 ms
    Memory:15048 kb
****************************************************************/

#include<cstdio>  
#include<cstring>  
#include<algorithm>  
using namespace std; 
#define N 1100  
#define BASE1 10016957  
#define BASE2 10016959  
#define Mod 10100  

struct abcd
{  
    unsigned num;  
    int next;  
}table[N*N];  
int m,n,a,b,q;  
unsigned int sum[N][N],power1[N],power2[N];  
int hash_table[Mod],tot;

void Hash(unsigned int x)  
{  
    int pos=x%Mod;  
    table[++tot].num=x;  
    table[tot].next=hash_table[pos];  
    hash_table[pos]=tot;  
}  
bool Get_Hash(unsigned int x)  
{  
    int pos=x%Mod;  
    for(int i=hash_table[pos];i;i=table[i].next)  
    if(table[i].num==x) return true;  
    return false;     
}  
int main()  
{  
    scanf("%d%d%d%d",&m,&n,&a,&b);
    for(int i=1;i<=m;++i)  
    for(int j=1;j<=n;++j) scanf("%1d",&sum[i][j]);  
    for(int i=1;i<=m;++i)  
    for(int j=1;j<=n;++j) sum[i][j]+=sum[i-1][j]*BASE1;  
    for(int i=1;i<=m;++i)  
    for(int j=1;j<=n;++j) sum[i][j]+=sum[i][j-1]*BASE2;  
    power1[0]=power2[0]=1;  
    for(int i=1;i<N;++i) 
    {
        power1[i]=power1[i-1]*BASE1;  
        power2[i]=power2[i-1]*BASE2;
    }
    for(int i=a;i<=m;++i)  
    for(int j=b;j<=n;++j)  
    {  
        unsigned int temp=sum[i][j]
                -sum[i-a][j]*power1[a]  
                -sum[i][j-b]*power2[b]  
                +sum[i-a][j-b]*power1[a]*power2[b];  
        Hash(temp);  
    }  
    for(scanf("%d",&q);q;--q)  
    {  
        for(int i=1;i<=a;++i)  
        for(int j=1;j<=b;++j) scanf("%1d",&sum[i][j]);  
        for(int i=1;i<=a;++i)  
        for(int j=1;j<=b;++j) sum[i][j]+=sum[i-1][j]*BASE1;  
        for(int i=1;i<=a;++i)  
        for(int j=1;j<=b;++j) sum[i][j]+=sum[i][j-1]*BASE2;  
        unsigned int temp=sum[a][b];  
        puts(Get_Hash(temp)?"1":"0");
    }  
    return 0;
}  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值