UOJ147 搜索 解题报告

题目描述

牛牛最近迷上了一种叫斗地主的扑克游戏。斗地主是一种使用黑桃、红心、梅花、方片的A到K加上大小王的共54张牌来进行的扑克牌游戏。在斗地主中,牌的大小关 系根据牌的数码表示如下:3<4<5<6<7<8<9<10 < J < Q < K < A<2<小王<大王而花色并不对牌的大小产生影响。每一局游戏中,一副手牌由 nn 张牌组成。游戏者每次可以根据规定的牌型进行出牌,首先打光自己的手牌一方取得游戏的胜利。

现在,牛牛只想知道,对于自己的若干组手牌,分别最少需要多少次出牌可以将它们打光。请你帮他解决这个问题。

需要注意的是,本题中游戏者每次可以出手的牌型与一般的斗地主相似而略有不同。具体规则如下:

牌型 牌型说明 牌型举例
火箭 即双王(双鬼牌) ♂ ♀
炸弹 四张同点牌。 ♠A ♥A ♣A ♦A
单张牌 单张牌 ♠3
对子牌 两张码数相同的牌 ♠2 ♥2
三张牌 三张码数相同的牌 ♠3 ♥3 ♣3
三带一 三张码数相同的牌 + 一张单牌 ♠3 ♥3 ♣3 ♠4
三带二 三张码数相同的牌 + 一对牌 ♠3 ♥3 ♣3 ♠4 ♥4
单顺子 五张或更多码数连续的单牌(不包括 2 点和双王) ♠7 ♣8 ♠9 ♣10 ♣J
双顺子 三对或更多码数连续的对牌(不包括 2 点和双王) ♣3 ♥3 ♠4 ♥4 ♠5 ♥5
三顺子 二个或更多码数连续的三张牌(不能包括 2 点和双王) ♠3 ♥3 ♣3 ♠4 ♥4 ♣4 ♠5 ♦5 ♥5
四带二 四张码数相同的牌+任意两张单牌(或任意两对牌) ♠5 ♥5 ♣5 ♦5 ♣3 ♣8

输入格式

第一行包含用空格隔开的2个正整数 T,nT,n ,表示手牌的组数以及每组手牌的张数。

接下来 TT 组数据,每组数据 nn 行,每行一个非负整数对 ai,biai,bi ,表示一张牌,其中 aiai 表示牌的数码, bibi 表示牌的花色,中间用空格隔开。特别的,我们用 11 来表示数码 A, 1111 表示数码 J, 1212 表示数码 Q, 1313 表示数码 K;黑桃、红心、梅花、方片分别用 1-4 来表示;小王的表示方法为 0 1 ,大王的表示方法为 0 2 。

输出格式

共 TT 行,每行一个整数,表示打光第 ii 组手牌的最少次数。

【解题报告】
爆搜。

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 16
int n,a[N],ans,cnt[5];
int calc()
{
    int ret=0,temp;
    memset(cnt,0,sizeof(cnt));
    for(int i=0;i<=14;i++) cnt[a[i]]++;
    if(cnt[4])
    {
        temp=min(cnt[4],cnt[2]/2);
        ret+=temp;
        cnt[4]-=temp;
        cnt[2]-=2*temp;
        temp=min(cnt[4],cnt[1]/2);
        ret+=temp;
        cnt[4]-=temp;
        cnt[1]-=2*temp;
    }
    if(cnt[3])
    {
        temp=min(cnt[3],cnt[2]);
        ret+=temp;
        cnt[3]-=temp;
        cnt[2]-=temp;
        temp=min(cnt[3],cnt[1]);
        ret+=temp;
        cnt[3]-=temp;
        cnt[1]-=temp;
    }
    for(int i=1;i<=4;i++) ret+=cnt[i];
    if(cnt[1]>=2&&a[0]&&a[1]) ret--;
    return ret;
}
void dfs(int step)
{
    if(step>=ans) return;
    ans=min(ans,step+calc());
    for(int i=3;i<=14;i++) if(a[i]>=3)
    for(int j=i+1;j<=14;j++)
    {
        if(a[j]<3) break;
        for(int k=i;k<=j;k++) a[k]-=3;
        dfs(step+1);
        for(int k=i;k<=j;k++) a[k]+=3;
    }
    for(int i=3;i<=14;i++) if(a[i]>=2)
    for(int j=i+1;j<=14;j++)
    {
        if(a[j]<2) break;
        if(j-i<2) continue;
        for(int k=i;k<=j;k++) a[k]-=2;
        dfs(step+1);
        for(int k=i;k<=j;k++) a[k]+=2;
    }
    for(int i=3;i<=14;i++) if(a[i]>=1)
    for(int j=i+1;j<=14;j++)
    {
        if(a[j]<1) break;
        if(j-i<4) continue;
        for(int k=i;k<=j;k++) a[k]--;
        dfs(step+1);
        for(int k=i;k<=j;k++) a[k]++;
    }
    for(int i=2;i<=14;i++)
    {
        if(a[i]==4)
        {
            for(int j=2;j<=14;j++)
            {
                if(j==i) continue;
                if(a[j]==4)
                {                   
                    a[i]=a[j]=0;
                    dfs(step+1);
                    a[i]=a[j]=4;
                }
                if(a[j]>=3)
                for(int k=2;k<=14;k++)
                {
                    if(k==i||k==j) continue;
                    if(a[k]>=2)
                    {
                        a[i]-=4;a[j]-=2;a[k]-=2;
                        dfs(step+1);
                        a[i]+=4;a[j]+=2;a[k]+=2;
                    }
                }
                if(a[j]>=2)
                {
                    for(int k=2;k<=14;k++)
                    {
                        if(k==i||k==j) continue;
                        if(a[k]>=1)
                        {
                            a[i]-=4;a[j]-=1;a[k]-=1;
                            dfs(step+1);
                            a[i]+=4;a[j]+=1;a[k]+=1;
                        }
                    }
                    a[i]-=4;a[j]-=2;
                    dfs(step+1);
                    a[i]+=4;a[j]+=2;
                }
            } 
        }
        if(a[i]==3)
        {
            for(int j=2;j<=14;j++)
            {
                if(j==i)continue;
                if(a[j]>=2)
                {
                    a[i]-=3;a[j]-=1;
                    dfs(step+1);
                    a[i]+=3;a[j]+=1;
                }
                if(a[j]>=3)
                {
                    a[i]-=3;a[j]-=2;
                    dfs(step+1);
                    a[i]+=3;a[j]+=2;
                }
            }
        }
    }
}
int main()
{
    int T;
    scanf("%d%d",&T,&n);
    while(T--)
    {
        memset(a,0,sizeof(a));
        for(int i=1,x,y;i<=n;i++)
        {
            scanf("%d%d",&x,&y);
            if(x==1) x=14;
            else if(x==0&&a[0]) x=1;
            a[x]++;
        }
        ans=calc();
        dfs(0);
        printf("%d\n",ans);
    }
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值