BZOJ 1002 矩阵树找规律递推高精度 解题报告

1002: [FJOI2007]轮状病毒

Description

轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的。一个N轮状基由圆环上N个不同的基原子
和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道。如下图所示
这里写图片描述
N轮状病毒的产生规律是在一个N轮状基中删去若干条边,使得各原子之间有唯一的信息通道,例如共有16个不
同的3轮状病毒,如下图所示
这里写图片描述
现给定n(N<=100),编程计算有多少个不同的n轮状病毒

Input

第一行有1个正整数n

Output

计算出的不同的n轮状病毒数输出

Sample Input

3

Sample Output

16

【解题报告】
一开始题都没读完就写了个矩阵树。。。

/**************************************************************
    Problem: 1002
    User: onepointo
    Language: C++
    Result: Wrong_Answer
****************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define mod 1000000007.0
#define N 110
#define eps 1e-10

int n,m;
int mp[N][N],de[N][N];
double C[N][N];

void gauss()
{
    int cnt=1;
    for(int i=1;i<=n;i++)
    {
        int x=cnt;
        while(fabs(C[x][cnt])<eps&&x<=n) x++;
        if(x==n+1){puts("0");return;}
        for(int j=1;j<=n;j++) 
        {
            swap(C[cnt][j],C[x][j]);
        }
        for(int j=cnt+1;j<=n;j++)
        {
            double r=C[j][cnt]/C[cnt][cnt];
            for(int k=1;k<=n;k++)
            {
                C[j][k]-=fmod(fmod(r*C[cnt][k],mod)+mod,mod);
            }
        }
        cnt++;
    }
    double ans=1;
    for(int i=1;i<=n;i++) 
    {
        ans*=C[i][i];
        ans=fmod(ans,mod);
    }
    printf("%.0lf\n",fabs(ans));
}

int main()
{
    scanf("%d",&n);
    for(int i=2;i<=n+1;++i) 
    {
        ++mp[i][1];++mp[1][i];
        ++de[1][1];++de[i][i];  
    }
    for(int i=2;i<=n;++i) 
    {
        ++mp[i][i+1];++mp[i+1][i];
        ++de[i+1][i+1];++de[i][i];  
    }
    ++mp[n+1][2];++mp[2][n+1];
    ++de[2][2];++de[n+1][n+1];
    for(int i=1;i<=n+1;++i)
    for(int j=1;j<=n+1;++j)
        C[i][j]=de[i][j]-mp[i][j];
    gauss();
    return 0;
}


然后稳稳地挂了。。。
然后肉眼观察了一下,应该是有公式的:
f[n]=3f[n1]f[n2]+2
然后我往后推了几个,发现
1->1——————1^2
2->5——————3^2-4
3->16——————4^2
4->45——————7^2-4
5->121—————11^2
6->320—————18^2-4
然后就高精度了

/**************************************************************
    Problem: 1002
    User: onepointo
    Language: C++
    Result: Accepted
    Time:416 ms
    Memory:23212 kb
****************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define N 110

int n;
struct Number{int a[50000];}f[N];

Number jia(Number x,Number y)
{
    Number z;
    for(int i=1;i<=x.a[0];++i)
      x.a[i]+=y.a[i];
    for(int i=1;i<=x.a[0];++i)
    {
        x.a[i+1]+=x.a[i]/10;
        x.a[i]%=10;
    }
    if(x.a[x.a[0]+1]!=0) x.a[0]+=1;
    return x;
}
Number mul(Number x)
{
    Number z;
    for(int i=0;i<=x.a[0]*2;++i) z.a[i]=0;
    for(int i=1;i<=x.a[0];++i)
    {
        int v=0;
        for(int j=1;j<=x.a[0];++j)
        {
            z.a[i+j-1]+=x.a[i]*x.a[j]+v;
            v=z.a[i+j-1]/10;
            z.a[i+j-1]%=10;
        }
        z.a[i+x.a[0]]=v;
    }
    z.a[0]=x.a[0]+x.a[0];
    while(z.a[z.a[0]]==0&&z.a[0]>1) z.a[0]-=1;  
    return z;
}
Number jian(Number x)
{
    if(x.a[1]>=4) x.a[1]-=4;
    else
    {
        x.a[2]-=1;
        x.a[1]=x.a[1]+10-4;
    }
    return x;
}
int main()
{
    int i,j;
    scanf("%d",&n);
    f[1].a[1]=1;f[2].a[1]=3;
    f[1].a[0]=f[2].a[0]=1;
    for(i=3;i<=n;++i)
    {
        f[i]=jia(f[i-1],f[i-2]);    
    } 
    f[n]=mul(f[n]);
    if(n%2==0) f[n]=jian(f[n]);
    for(i=f[n].a[0];i>=1;--i)
    printf("%d",f[n].a[i]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值