# BZOJ 1682 [Usaco2005 Mar] 最小生成树 解题报告

1682: [Usaco2005 Mar]Out of Hay 干草危机

Description

The cows have run out of hay, a horrible event that must be remedied immediately. Bessie intends to visit the other farms to survey their hay situation. There are N (2 <= N <= 2,000) farms (numbered 1..N); Bessie starts at Farm 1. She’ll traverse some or all of the M (1 <= M <= 10,000) two-way roads whose length does not exceed 1,000,000,000 that connect the farms. Some farms may be multiply connected with different length roads. All farms are connected one way or another to Farm 1. Bessie is trying to decide how large a waterskin she will need. She knows that she needs one ounce of water for each unit of length of a road. Since she can get more water at each farm, she’s only concerned about the length of the longest road. Of course, she plans her route between farms such that she minimizes the amount of water she must carry. Help Bessie know the largest amount of water she will ever have to carry: what is the length of longest road she’ll have to travel between any two farms, presuming she chooses routes that minimize that number? This means, of course, that she might backtrack over a road in order to minimize the length of the longest road she’ll have to traverse.

Input

• Line 1: Two space-separated integers, N and M. * Lines 2..1+M: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, describing a road from A_i to B_i of length L_i.
第1行输入两个整数N和M;接下来M行，每行输入三个整数，表示一条道路的起点终点和长度．

Output

• Line 1: A single integer that is the length of the longest road required to be traversed.
输出一个整数，表示在路线上最长道路的最小值．

Sample Input

3 3
1 2 23
2 3 1000
1 3 43

Sample Output

43

【解题报告】

/**************************************************************
Problem: 1682
User: onepointo
Language: C++
Result: Accepted
Time:44 ms
Memory:1064 kb
****************************************************************/

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 2010
#define M 20010

int n,m,cnt;
int fa[N];
struct Edge
{
int u,v,w;
friend bool operator < (const Edge &a,const Edge &b)
{return a.w<b.w;}
}e[M];
int find(int x)
{
return (x==fa[x])?x:fa[x]=find(fa[x]);
}

int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) fa[i]=i;
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
}
sort(e+1,e+m+1);
for(int i=1;;i++)
{
int u=find(e[i].u),v=find(e[i].v);
if(u!=v)
{
fa[u]=v;cnt++;
if(cnt==n-1)
{
printf("%d\n",e[i].w);
break;
}
}
}
return 0;
}
﻿

10-28 399
09-28 264
09-20 34
09-13 1576
10-31 1022
03-09 417
03-31 930
09-19 1426