线段树定义:
1,一种支持范围整体修改和范围整体查询的数据结构
2,解决的问题范畴:
大范围信息可以只由左、右两侧信息加工出,
而不必遍历左右两个子范围的具体状况
线段树例如:
给定一个数组arr,用户希望你实现如下三个方法
1)void add(int L, int R, int V) : 让数组arr[L…R]上每个数都加上V
2)void update(int L, int R, int V) : 让数组arr[L…R]上每个数都变成V
3)int sum(int L, int R) :让返回arr[L…R]这个范围整体的累加和
怎么让这三个方法,时间复杂度都是O(logN)
思路:
1.每个arr[] 下表是从0到N-1 先变为1到N,这样arr[]就可以变成一个树的格式
2.sum就可以维护一个区间的和,且X的左树就是X*2 右树就是X*2+1
3.假如来一个add请求,我们当前X位置代表区间是 2-4 而来的请求是1-9加Y 那么我们就可以2-4的和加上(2-4整体个数)*Y,而有一个懒加载的数+Y
假如这个请求代表区间2-4 而请求是3-6,那么如果2-4有懒加载需要先把这个值下发到2-4下面的子树,再看这个3-6的请求在子树如何搞
4假如一个update 我们需要告诉下面有个update请求且会变成啥,一旦这个下发了则会置空下面add的懒加载,所以下发的方法肯定是先update再add
5查询一个道理,在区间返回sum 不在就下发了再收集
public static void main(String[] args) {
int[] origin = { 2, 1, 1, 2, 3, 4, 5 };
SegmentTree seg = new SegmentTree(origin);
int S = 1; // 整个区间的开始位置,规定从1开始,不从0开始 -> 固定
int N = origin.length; // 整个区间的结束位置,规定能到N,不是N-1 -> 固定
int root = 1; // 整棵树的头节点位置,规定是1,不是0 -> 固定
int L = 2; // 操作区间的开始位置 -> 可变
int R = 5; // 操作区间的结束位置 -> 可变
int C = 4; // 要加的数字或者要更新的数字 -> 可变
// 区间生成,必须在[S,N]整个范围上build
seg.build(S, N, root);
// 区间修改,可以改变L、R和C的值,其他值不可改变
seg.add(L, R, C, S, N, root);
// 区间更新,可以改变L、R和C的值,其他值不可改变
seg.update(L, R, C, S, N, root);
// 区间查询,可以改变L和R的值,其他值不可改变
long sum = seg.query(L, R, S, N, root);
System.out.println(sum);
}
public static class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加和懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int MAXN;
private int[] arr;
private int[] sum;
private int[] lazy;
private int[] change;
private boolean[] update;
public SegmentTree(int[] origin) {
MAXN = origin.length + 1;
arr = new int[MAXN]; // arr[0] 不用 从1开始使用
for (int i = 1; i < MAXN; i++) {
arr[i] = origin[i - 1];
}
sum = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new int[MAXN << 2]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[MAXN << 2]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
}
//给一个父节点,求2个子树的和
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
// 之前的,所有懒增加,和懒更新,从父范围,发给左右两个子范围
// 分发策略是什么
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
//左右都要有update了 把update下发了
// 左右都变为change[rt] lazy还原为0 因为有update所以不再存在add的lazy
//把左右子树的sum改了
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 | 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 | 1] = change[rt] * rn;
update[rt] = false;
}
//针对懒加载下发
if (lazy[rt] != 0) {
//下发左边的树
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
//下发右边的树
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt] * rn;
//当前树再有懒加载
lazy[rt] = 0;
}
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
//如果左等于右说明 就一个了 那么sum就是他自己
if (l == r) {
sum[rt] = arr[l];
return;
}
//二分左右区间 比如当前节点代表的是1-10整体 分开左边就是1-5 右边就是6-10
//rt此时假如第一次进来为1
int mid = (l + r) >> 1;
//左边 1-5 rt变为1的左子树2
build(l, mid, rt << 1);
//右边 6-10 rt变为1的右子树3
build(mid + 1, r, rt << 1 | 1);
//合并1的左边和右边值 得到sum[rt]
pushUp(rt);
}
// L~R 所有的值变成C
// l~r rt
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// L~R, C 任务!
// rt,l~r
public void add(int L, int R, int C, int l, int r, int rt) {
// 任务如果把此时的范围全包了!
if (L <= l && r <= R) {
//1这个位置 sum 就是 C*所有的树的和
sum[rt] += C * (r - l + 1);
//不往下传递 懒加载一个C
lazy[rt] += C;
return;
}
// 任务没有把你全包! 懒加载下发
// l r mid = (l+r)/2
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
// L~R
if (L <= mid) {
//左边整体做add
add(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
//右边整体做add
add(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
// 1~6 累加和是多少? 1~8 rt
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 | 1);
}
return ans;
}
}
线段树题目:
想象一下标准的俄罗斯方块游戏,X轴是积木最终下落到底的轴线
下面是这个游戏的简化版:
1)只会下落正方形积木
2)[a,b] -> 代表一个边长为b的正方形积木,积木左边缘沿着X = a这条线从上方掉落
3)认为整个X轴都可能接住积木,也就是说简化版游戏是没有整体的左右边界的
4)没有整体的左右边界,所以简化版游戏不会消除积木,因为不会有哪一层被填满。
给定一个N*2的二维数组matrix,可以代表N个积木依次掉落,
返回每一次掉落之后的最大高度
public static class SegmentTree {
private int[] max;
private int[] change;
private boolean[] update;
public SegmentTree(int size) {
int N = size + 1;
max = new int[N << 2];
change = new int[N << 2];
update = new boolean[N << 2];
}
private void pushUp(int rt) {
max[rt] = Math.max(max[rt << 1], max[rt << 1 | 1]);
}
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 | 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 | 1] = change[rt];
max[rt << 1] = change[rt];
max[rt << 1 | 1] = change[rt];
update[rt] = false;
}
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
max[rt] = C;
return;
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 | 1);
}
pushUp(rt);
}
public int query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return max[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
int left = 0;
int right = 0;
if (L <= mid) {
left = query(L, R, l, mid, rt << 1);
}
if (R > mid) {
right = query(L, R, mid + 1, r, rt << 1 | 1);
}
return Math.max(left, right);
}
}
//将二维数组下标化 比如[[1,2],[3,3]] 变为下标 key左右边界,value为下标从1到N {1,1}{2,2}{5,3}
public HashMap<Integer, Integer> index(int[][] positions) {
TreeSet<Integer> pos = new TreeSet<>();
for (int[] arr : positions) {
pos.add(arr[0]);
pos.add(arr[0] + arr[1] - 1);
}
HashMap<Integer, Integer> map = new HashMap<>();
int count = 0;
for (Integer index : pos) {
map.put(index, ++count);
}
return map;
}
public List<Integer> fallingSquares(int[][] positions) {
HashMap<Integer, Integer> map = index(positions);
int N = map.size();
SegmentTree segmentTree = new SegmentTree(N);
int max = 0;
List<Integer> res = new ArrayList<>();
// 每落一个正方形,收集一下,所有东西组成的图像,最高高度是什么
for (int[] arr : positions) {
//拿到2个下标
int L = map.get(arr[0]);
int R = map.get(arr[0] + arr[1] - 1);
//查找1-N中L-R的height + 当前的arr[1]就是L-R实际height
int height = segmentTree.query(L, R, 1, N, 1) + arr[1];
max = Math.max(max, height);
res.add(max);
//更新L-R的height
segmentTree.update(L, R, height, 1, N, 1);
}
return res;
}
IndexTree:
特点:
1)支持区间查询
2)没有线段树那么强,但是非常容易改成一维、二维、三维的结构
3)只支持单点更新
给一个数组下标为 1,2,3,4,5,6,7,8
前缀和 则为[【1】,【1,2】,【1,2,3】,【1,2,3,4】,【1,2,3,4,5】,【1,2,3,4,5,6】,【1,2,3,4,5,6,7】,【1,2,3,4,5,6,7,8】]
那么index前缀和
【1】【1,2】【3】【1,2,3,4】【5】【5,6】【7】【1,2,3,4,5,6,7,8】
1 2 3 4 5 6 7 8 下标
意思就是 到一个下标先自己成为一个整体,看之前有没有和自己一样的数量整体,如果有那么就合并一起管理
那么如果我改了下标3 加10 那么需要更改的下标是 4,8 如何得到呢,有个好玩的方法:
3二进制 ...011 那么他加上取反+1就是下一个位置(index & -index)或者是(index & ~index+1)
也就是...001+...011 结果就是..100=4
4继续+....100 就是 ...1000=8
那么每个下标管理的是哪些和呢?
就是自己的二进制到 自己二进制减去(index & -index) 比如 011-001=2 所以3只管理自己
这样就得到了index的基础代码
// 下标从1开始!
public static class IndexTree {
private int[] tree;
private int N;
// 0位置弃而不用!
public IndexTree(int size) {
N = size;
tree = new int[N + 1];
}
// 1~index 累加和是多少?
public int sum(int index) {
int ret = 0;
while (index > 0) {
ret += tree[index];
index -= index & -index;
}
return ret;
}
// index & -index : 提取出index最右侧的1出来
// index : 0011001000
// index & -index : 0000001000(index & (~index+1))
public void add(int index, int d) {
while (index <= N) {
tree[index] += d;
index += index & -index;
}
}
}
如果indexTree改为二维的就是 二维的2个数 都管理成上面的方式 [X,Y]管理的就是( X-X&-X到X )*( Y-Y&-Y到Y)
AC自动机
解决在一个大字符串中,找到多个候选字符串的问题
1)把所有匹配串生成一棵前缀树
2)前缀树节点增加fail指针
3)fail指针的含义:如果必须以当前字符结尾,当前形成的路径是str,剩下哪一个字符串的前缀和str的后缀,拥有最大的匹配长度。fail指针就指向那个字符串的最后一个字符所对应的节点。看虚线
// 前缀树的节点
public static class Node {
// 如果一个node,end为空,不是结尾
// 如果end不为空,表示这个点是某个字符串的结尾,end的值就是这个字符串
public String end;
// 只有在上面的end变量不为空的时候,endUse才有意义
// 表示,这个字符串之前有没有加入过答案
public boolean endUse;
public Node fail;
public Node[] nexts;
public Node() {
endUse = false;
end = null;
fail = null;
nexts = new Node[26];
}
}
public static class ACAutomation {
private Node root;
public ACAutomation() {
root = new Node();
}
public void insert(String s) {
char[] str = s.toCharArray();
Node cur = root;
int index = 0;
for (int i = 0; i < str.length; i++) {
index = str[i] - 'a';
if (cur.nexts[index] == null) {
cur.nexts[index] = new Node();
}
cur = cur.nexts[index];
}
cur.end = s;
}
public void build() {
Queue<Node> queue = new LinkedList<>();
queue.add(root);
Node cur = null;
Node cfail = null;
while (!queue.isEmpty()) {
// 某个父亲,cur
cur = queue.poll();
for (int i = 0; i < 26; i++) { // 所有的路
// cur -> 父亲 i号儿子,必须把i号儿子的fail指针设置好!
if (cur.nexts[i] != null) { // 如果真的有i号儿子
cur.nexts[i].fail = root;
cfail = cur.fail;
while (cfail != null) {
if (cfail.nexts[i] != null) {
cur.nexts[i].fail = cfail.nexts[i];
break;
}
cfail = cfail.fail;
}
queue.add(cur.nexts[i]);
}
}
}
}
// 大文章:content
public List<String> containWords(String content) {
char[] str = content.toCharArray();
Node cur = root;
Node follow = null;
int index = 0;
List<String> ans = new ArrayList<>();
for (int i = 0; i < str.length; i++) {
index = str[i] - 'a'; // 路
// 如果当前字符在这条路上没配出来,就随着fail方向走向下条路径
while (cur.nexts[index] == null && cur != root) {
cur = cur.fail;
}
// 1) 现在来到的路径,是可以继续匹配的
// 2) 现在来到的节点,就是前缀树的根节点
cur = cur.nexts[index] != null ? cur.nexts[index] : root;
follow = cur;
while (follow != root) {
if (follow.endUse) {
break;
}
// 不同的需求,在这一段之间修改
if (follow.end != null) {
ans.add(follow.end);
follow.endUse = true;
}
// 不同的需求,在这一段之间修改
follow = follow.fail;
}
}
return ans;
}
}
public static void main(String[] args) {
ACAutomation ac = new ACAutomation();
ac.insert("dhe");
ac.insert("he");
ac.insert("abcdheks");
// 设置fail指针
ac.build();
List<String> contains = ac.containWords("abcdhekskdjfafhasldkflskdjhwqaeruv");
for (String word : contains) {
System.out.println(word);
}
}