第三章 H-阵 二次型 投影算子

H-阵 二次型 投影算子等等

Schmidt正交化

看H-阵之前,可以先看看施密特Schmidt正交化,现有 [ α 1 , α 2 , … , α n ] \Large[\alpha_1,\alpha_2,\dots,\alpha_n] [α1,α2,,αn],需要将其正交化,计算过程如下:
β 1 = α 1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 ⋮ β i = α i − ( α i , β 1 ) ( β 1 , β 1 ) β 1 − ( α i , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α i , β i − 1 ) ( β i − 1 , β i − 1 ) β i − 1 \large \begin{aligned} \beta_1 &= \alpha_1\\ \beta_2 &= \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \vdots \\ \beta_i &= \alpha_i - \frac{(\alpha_i,\beta_1)}{(\beta_1,\beta_1)}\beta_1- \frac{(\alpha_i,\beta_2)}{(\beta_2,\beta_2)}\beta_2-\dots-\frac{(\alpha_i,\beta_{i-1})}{(\beta_{i-1},\beta_{i-1})}\beta_{i-1} \end{aligned} β1β2βi=α1=α2(β1,β1)(α2,β1)β1=αi(β1,β1)(αi,β1)β1(β2,β2)(αi,β2)β2(βi1,βi1)(αi,βi1)βi1

H-阵(自共轭矩阵)

A H = A A^H = A AH=A 就是 H-阵
做题用到的几条性质:

  1. H-阵特征值均为实数
  2. Q A Q H QAQ^H QAQH也为H阵

正定矩阵

定义:对于 f ( X ) = f ( x 1 , x 2 , … , x n ) = X H A X f(X)=f(x_1,x_2,\dots,x_n)=X^HAX f(X)=f(x1,x2,,xn)=XHAX
性质

  1. d e t ( A ) det(A) det(A)为正数
  2. A − 1 A^{-1} A1也是正定矩阵

半正定的H-阵

A A A 为半正定的H-阵

  1. 存在秩为 r r r n n n 阶矩阵 Q Q Q 使得 A = Q H Q A=Q^H Q A=QHQ
  2. 存在可逆矩阵 P P P, 使得 P H A P = [ I r 0 0 0 ] P^HAP= \left [ \begin {matrix} I_r & 0\\ 0&0 \end {matrix} \right ] PHAP=[Ir000]
  3. A的特征值非负。
  4. 对于任何 n n n 阶可逆矩阵 P P P,都有 P − 1 A P P^{-1}AP P1AP 也是半正定H-阵。

正定的H-阵

A A A 为正定的H-阵.

  1. 存在可逆矩阵 Q Q Q, 使得 A = Q H Q A=Q^H Q A=QHQ.
  2. 存在 P P P, 使得 P H A P = I P^HAP=I PHAP=I.
  3. A的特征值大于0.
  4. Q − 1 A Q Q^{-1}AQ Q1AQ 也是正定H-阵.

H-阵复相合下的标准形定理

若 A , B 为两个正定 H 阵,存在可逆矩阵 P ,使得 P H A P = [ λ 1 λ 2 ⋱ λ n ] , P H B P = [ 1 1 ⋱ 1 ] 若A,B为两个正定H阵, 存在可逆矩阵P,使得\\ \begin{aligned} P^HAP&= \left [ \begin {matrix} \lambda_1 & \\ & \lambda_2 &\\ & &\ddots\\ & & &\lambda_n \end {matrix} \right ],\\ P^HBP&= \left [ \begin {matrix} 1 & \\ & 1 &\\ & &\ddots\\ & & &1 \end {matrix} \right ] \end{aligned} A,B为两个正定H阵,存在可逆矩阵P,使得PHAPPHBP= λ1λ2λn = 111

正交投影变换

投影算子是幂等矩阵
正交的两个子空间:设 S S S T T T n n n 维酉空间 V V V 的两个子空间,若对应任意的 x ∈ S , y ∈ T x\in{S},y\in{T} xS,yT,都有 ( x , y ) = 0 (x,y)=0 (x,y)=0,则称 S S S T T T 是正交的。
S S S T T T的和,称为正交和,也就是直和, S + T S+T S+T
投影变换就是 α ∈ S + T \alpha \in{S+T} αS+T α \alpha α 投影到 S S S T T T 上。
例如:设 维酉空间 V V V 是子空间 S S S T T T正交和 x ∈ S , y ∈ T x\in{S},y\in{T} xS,yT,投影变换 σ : V → S ⊆ V \large \sigma:V\rightarrow S\subseteq V σ:VSV
σ ( α ) = x \large \sigma(\alpha)=x σ(α)=x
称为 V \large V V S \large S S 的正交投影。

正交投影算子求法:

例题:已知 R 3 R^3 R3 中向量 a = ( 1 , 0 , 0 ) a=(1, 0, 0) a=(1,0,0) β = ( 2 , 0 , 3 ) \beta=(2, 0 ,3) β=(2,0,3),则向量 x = ( x 1 , x 2 , x 3 ) ∈ R 3 x=(x_1,x_2,x_3 )\in{R^3} x=(x1,x2,x3)R3 在子空间 s p a n { α , β } span\{\alpha,\beta\} span{α,β} 上的正交投影为?
先将 α , β 标准正交化 为 η 1 = [ 1 , 0 , 0 ] T , η 2 = [ 0 , 0 , 1 ] T U = [ η 1 , η 2 ] 投影算子 P = U U H 向量 x = ( x 1 , x 2 , x 3 ) ∈ R 3 在子空间 s p a n { α , β } 上的正交投影为: P x = U U H x = [ 1 0 0 0 0 1 ] [ 1 0 0 0 0 1 ] [ x 1 , x 2 , x 3 ] T = [ 1 0 0 0 0 0 0 0 1 ] [ x 1 , x 2 , x 3 ] T = ( x 1 , 0 , x 3 ) \begin{aligned} 先将\alpha, \beta \boldsymbol{标准正交化}为\eta_1&=[1,0,0]^T, \eta_2=[0,0,1]^T\\ U &= [\eta_1, \eta_2] \\ 投影算子& \boldsymbol{P=UU^H} \\ 向量 x=(x_1,x_2,x_3 )\in{R^3} &在子空间span\{\alpha,\beta\} 上的正交投影为:\\ Px&=UU^Hx\\ &= { \left [ \begin {matrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end {matrix} \right ] } { \left [ \begin {matrix} 1 & 0 & 0\\ 0 & 0 & 1\\ \end {matrix} \right ] } { [x_1,x_2,x_3]^T } \\&= \left[ \begin{matrix} 1 & 0&0 \\ 0 & 0 &0\\ 0 & 0 &1\\ \end{matrix} \right ] [x_1,x_2,x_3]^T \\&= (x_1,0,x_3) \end{aligned} 先将α,β标准正交化η1U投影算子向量x=(x1,x2,x3)R3Px=[1,0,0]T,η2=[0,0,1]T=[η1,η2]P=UUH在子空间span{α,β}上的正交投影为:=UUHx= 100001 [100001][x1,x2,x3]T= 100000001 [x1,x2,x3]T=(x1,0,x3)

请添加图片描述
酉矩阵同理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值