H-阵 二次型 投影算子等等
Schmidt正交化
看H-阵之前,可以先看看施密特Schmidt正交化,现有
[
α
1
,
α
2
,
…
,
α
n
]
\Large[\alpha_1,\alpha_2,\dots,\alpha_n]
[α1,α2,…,αn],需要将其正交化,计算过程如下:
β
1
=
α
1
β
2
=
α
2
−
(
α
2
,
β
1
)
(
β
1
,
β
1
)
β
1
⋮
β
i
=
α
i
−
(
α
i
,
β
1
)
(
β
1
,
β
1
)
β
1
−
(
α
i
,
β
2
)
(
β
2
,
β
2
)
β
2
−
⋯
−
(
α
i
,
β
i
−
1
)
(
β
i
−
1
,
β
i
−
1
)
β
i
−
1
\large \begin{aligned} \beta_1 &= \alpha_1\\ \beta_2 &= \alpha_2 - \frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1\\ \vdots \\ \beta_i &= \alpha_i - \frac{(\alpha_i,\beta_1)}{(\beta_1,\beta_1)}\beta_1- \frac{(\alpha_i,\beta_2)}{(\beta_2,\beta_2)}\beta_2-\dots-\frac{(\alpha_i,\beta_{i-1})}{(\beta_{i-1},\beta_{i-1})}\beta_{i-1} \end{aligned}
β1β2⋮βi=α1=α2−(β1,β1)(α2,β1)β1=αi−(β1,β1)(αi,β1)β1−(β2,β2)(αi,β2)β2−⋯−(βi−1,βi−1)(αi,βi−1)βi−1
H-阵(自共轭矩阵)
A
H
=
A
A^H = A
AH=A 就是 H-阵
做题用到的几条性质:
- H-阵特征值均为实数
- Q A Q H QAQ^H QAQH也为H阵
正定矩阵
定义:对于
f
(
X
)
=
f
(
x
1
,
x
2
,
…
,
x
n
)
=
X
H
A
X
f(X)=f(x_1,x_2,\dots,x_n)=X^HAX
f(X)=f(x1,x2,…,xn)=XHAX
性质
- d e t ( A ) det(A) det(A)为正数
- A − 1 A^{-1} A−1也是正定矩阵
半正定的H-阵
若 A A A 为半正定的H-阵
- 存在秩为 r r r 的 n n n 阶矩阵 Q Q Q 使得 A = Q H Q A=Q^H Q A=QHQ
- 存在可逆矩阵 P P P, 使得 P H A P = [ I r 0 0 0 ] P^HAP= \left [ \begin {matrix} I_r & 0\\ 0&0 \end {matrix} \right ] PHAP=[Ir000]
- A的特征值非负。
- 对于任何 n n n 阶可逆矩阵 P P P,都有 P − 1 A P P^{-1}AP P−1AP 也是半正定H-阵。
正定的H-阵
若 A A A 为正定的H-阵.
- 存在可逆矩阵 Q Q Q, 使得 A = Q H Q A=Q^H Q A=QHQ.
- 存在 P P P, 使得 P H A P = I P^HAP=I PHAP=I.
- A的特征值大于0.
- Q − 1 A Q Q^{-1}AQ Q−1AQ 也是正定H-阵.
H-阵复相合下的标准形定理
若 A , B 为两个正定 H 阵,存在可逆矩阵 P ,使得 P H A P = [ λ 1 λ 2 ⋱ λ n ] , P H B P = [ 1 1 ⋱ 1 ] 若A,B为两个正定H阵, 存在可逆矩阵P,使得\\ \begin{aligned} P^HAP&= \left [ \begin {matrix} \lambda_1 & \\ & \lambda_2 &\\ & &\ddots\\ & & &\lambda_n \end {matrix} \right ],\\ P^HBP&= \left [ \begin {matrix} 1 & \\ & 1 &\\ & &\ddots\\ & & &1 \end {matrix} \right ] \end{aligned} 若A,B为两个正定H阵,存在可逆矩阵P,使得PHAPPHBP= λ1λ2⋱λn ,= 11⋱1
正交投影变换
投影算子是幂等矩阵
正交的两个子空间:设
S
S
S 和
T
T
T 为
n
n
n 维酉空间
V
V
V 的两个子空间,若对应任意的
x
∈
S
,
y
∈
T
x\in{S},y\in{T}
x∈S,y∈T,都有
(
x
,
y
)
=
0
(x,y)=0
(x,y)=0,则称
S
S
S 和
T
T
T 是正交的。
S
S
S 和
T
T
T的和,称为正交和,也就是直和,
S
+
T
S+T
S+T,
投影变换就是
α
∈
S
+
T
\alpha \in{S+T}
α∈S+T,
α
\alpha
α 投影到
S
S
S 或
T
T
T 上。
例如:设 维酉空间
V
V
V 是子空间
S
S
S 与
T
T
T 的正交和,
x
∈
S
,
y
∈
T
x\in{S},y\in{T}
x∈S,y∈T,投影变换
σ
:
V
→
S
⊆
V
\large \sigma:V\rightarrow S\subseteq V
σ:V→S⊆V,
σ
(
α
)
=
x
\large \sigma(\alpha)=x
σ(α)=x
称为
V
\large V
V 到
S
\large S
S 的正交投影。
正交投影算子求法:
例题:已知
R
3
R^3
R3 中向量
a
=
(
1
,
0
,
0
)
a=(1, 0, 0)
a=(1,0,0) ,
β
=
(
2
,
0
,
3
)
\beta=(2, 0 ,3)
β=(2,0,3),则向量
x
=
(
x
1
,
x
2
,
x
3
)
∈
R
3
x=(x_1,x_2,x_3 )\in{R^3}
x=(x1,x2,x3)∈R3 在子空间
s
p
a
n
{
α
,
β
}
span\{\alpha,\beta\}
span{α,β} 上的正交投影为?
先将
α
,
β
标准正交化
为
η
1
=
[
1
,
0
,
0
]
T
,
η
2
=
[
0
,
0
,
1
]
T
U
=
[
η
1
,
η
2
]
投影算子
P
=
U
U
H
向量
x
=
(
x
1
,
x
2
,
x
3
)
∈
R
3
在子空间
s
p
a
n
{
α
,
β
}
上的正交投影为:
P
x
=
U
U
H
x
=
[
1
0
0
0
0
1
]
[
1
0
0
0
0
1
]
[
x
1
,
x
2
,
x
3
]
T
=
[
1
0
0
0
0
0
0
0
1
]
[
x
1
,
x
2
,
x
3
]
T
=
(
x
1
,
0
,
x
3
)
\begin{aligned} 先将\alpha, \beta \boldsymbol{标准正交化}为\eta_1&=[1,0,0]^T, \eta_2=[0,0,1]^T\\ U &= [\eta_1, \eta_2] \\ 投影算子& \boldsymbol{P=UU^H} \\ 向量 x=(x_1,x_2,x_3 )\in{R^3} &在子空间span\{\alpha,\beta\} 上的正交投影为:\\ Px&=UU^Hx\\ &= { \left [ \begin {matrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end {matrix} \right ] } { \left [ \begin {matrix} 1 & 0 & 0\\ 0 & 0 & 1\\ \end {matrix} \right ] } { [x_1,x_2,x_3]^T } \\&= \left[ \begin{matrix} 1 & 0&0 \\ 0 & 0 &0\\ 0 & 0 &1\\ \end{matrix} \right ] [x_1,x_2,x_3]^T \\&= (x_1,0,x_3) \end{aligned}
先将α,β标准正交化为η1U投影算子向量x=(x1,x2,x3)∈R3Px=[1,0,0]T,η2=[0,0,1]T=[η1,η2]P=UUH在子空间span{α,β}上的正交投影为:=UUHx=
100001
[100001][x1,x2,x3]T=
100000001
[x1,x2,x3]T=(x1,0,x3)
酉矩阵同理。