矩阵分析
文章平均质量分 94
复习用的
ouger爱编程
许多人这一生最大的挑战,就是接受自己的平凡。
想做就去做吧!
展开
-
这是最后的战役了
AHA就是 H-阵。原创 2023-12-08 22:06:18 · 429 阅读 · 0 评论 -
第七章 函数矩阵
和矩阵函数不同的是,函数矩阵的重点在后面的矩阵,是以函数作为矩阵的元素。矩阵函数就是以矩阵作为函数的自变量x。函数矩阵和数字矩阵的运算法则完全相同。不过矩阵的元素aijx需要是闭区间ab上的实函数。原创 2023-12-01 11:32:43 · 1845 阅读 · 1 评论 -
第六章 矩阵函数
的化零多项式中,次数最低且首项系数为1的化零多项式称为。,即A 的特征多项式,也是化零多项式。原创 2023-11-25 21:26:34 · 1099 阅读 · 0 评论 -
第五章 范数
做题时:1,2,3点都好证明。注意列和范数、行和范数都是。,取得是列、行绝对值的和。原创 2023-11-21 23:47:03 · 116 阅读 · 0 评论 -
第二章 Jordan标准型
d1λd2λ⋱drλ0⋱0diλ∣di1λ化smith标准型的过程中,。smith标准型唯一Dkλ。原创 2023-11-20 16:42:11 · 192 阅读 · 0 评论 -
第三章 H-阵 二次型 投影算子
看H-阵之前,可以先看看施密特Schmidt正交化,现有α1α2αnβ1β2⋮βiα1α2−β1β1α2β1β1αi−β1β1αiβ1β1−β2β2αiβ2β2−⋯−βi−1βi−1αiβi−1βi−1。原创 2023-11-17 11:49:33 · 210 阅读 · 0 评论 -
第四章 矩阵分解
的特征值,显然特征值分解不唯一(因为特征向量不唯一,特征向量标准正交化时也不唯一)。第二步:将有重根的特征值对应的特征向量正交化。里面较为简单的那个矩阵的特征值和特征向量。第三步:把所有特征向量单位化为。原创 2023-11-17 11:02:03 · 155 阅读 · 0 评论