poj 3304 Segments(贪心+直线是否与线段相交!)

本文介绍了一种算法,用于判断是否存在一条直线能够穿过所有给定的线段。通过枚举端点并检查直线与线段之间的相交情况来实现。文章提供了详细的代码示例及几何判断条件。

题意:给你一些线段,问是否有一条直线都穿过他们。

分析:直线肯定经过两个端点。
枚举端点,判断直线和线段是否相交。
细节要注意,判断重合点。
还有就是加入只有一条线段的话,刚好直线是过同一条直线的。
所以保险的做法是枚举所有的两个端点,包括同一条直线的。

【这题主要还是看大神代码中的直线和线段的相交判断和判断是否有重合点啊!!几何!】




#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h>

using namespace std;

const double eps = 1e-8;
int sgn(double x)
{
    if(fabs(x) < eps)return 0;
    if(x < 0) return -1;
    return 1;
}
struct Point
{
    double x,y;
    Point(){}
    Point(double _x,double _y)
    {
        x = _x;y = _y;
    }
    Point operator -(const Point &b)const
    {
        return Point(x - b.x,y - b.y);
    }
    double operator ^(const Point &b)const
    {
        return x*b.y - y*b.x;
    }
    double operator *(const Point &b)const
    {
        return x*b.x + y*b.y;
    }
};
struct Line
{
    Point s,e;
    Line(){}
    Line(Point _s,Point _e)
    {
        s = _s;e = _e;
    }
};
double xmult(Point p0,Point p1,Point p2) //p0p1 X p0p2
{
    return (p1-p0)^(p2-p0);
}
bool Seg_inter_line(Line l1,Line l2) //判断直线l1和线段l2是否相交
{
    return sgn(xmult(l2.s,l1.s,l1.e))*sgn(xmult(l2.e,l1.s,l1.e)) <= 0;
}
double dist(Point a,Point b)
{
    return sqrt( (b - a)*(b - a) );
}
const int MAXN = 110;
Line line[MAXN];
bool check(Line l1,int n)
{
    if(sgn(dist(l1.s,l1.e)) == 0 )return false;
    for(int i = 0;i < n;i++)
        if(Seg_inter_line(l1,line[i]) == false)
            return false;
    return true;
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int n;
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        double x1,y1,x2,y2;
        for(int i = 0; i < n;i++)
        {
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            line[i] = Line(Point(x1,y1),Point(x2,y2));
        }
        bool flag = false;
        for(int i = 0;i < n;i++)
            for(int j = 0; j < n;j++)
                if(check(Line(line[i].s,line[j].s),n) || check(Line(line[i].s,line[j].e),n)
                        || check(Line(line[i].e,line[j].s),n) || check(Line(line[i].e,line[j].e),n) )
                {
                    flag = true;
                    break;
                }
        if(flag)
            printf("Yes!\n");
        else printf("No!\n");
    }
    return 0;
}



【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值