spark-sql读取不到parquet格式的hive表

情况一:

当向Hive metastore中读写Parquet表时,Spark SQL将使用Spark SQL自带的Parquet SerDe(SerDe:Serialize/Deserilize的简称,目的是用于序列化和反序列化),而不是用Hive的SerDe,Spark SQL自带的SerDe拥有更好的性能。这个优化的配置参数为spark.sql.hive.convertMetastoreParquet,默认值为开启。

所以有时会发生spark自带的序列化方式无法解析hive中的parquet数据,便读不到数据,此时可以将这个参数设置为false。

SET spark.sql.hive.convertMetastoreParquet = false;

情况二:

 当使用spark-shell 或者spark api(e.g. saveAsTable) 创建Hive表时,在修改表结构是,可能会出现spark读取数据字段为null 的情况。

--- 方案一:
1. spark-shell/shive 删除表,再建表 
2. 除分区字段外其他表再建表语句中都是大写/小写,根据最初见表决定
3. Map Array filter null

--- 方案二:
1. hive drop 表, 再建表
2. spark-shell/shive 修复分区
3. hive 修复分区

Spark SQL可以通过以下步骤解析查询Parquet格式Hive并获取分区字段和查询条件: 1. 首先,使用SparkSession对象创建一个DataFrame,该DataFrame将连接到Hive读取Parquet格式的数据。 2. 接下来,使用DataFrame的schema()方法获取的模式,包括分区字段和非分区字段。 3. 使用DataFrame的filter()方法来应用查询条件,并使用where()方法来指定分区字段的值。 4. 最后,使用DataFrame的select()方法选择要返回的列,并使用show()方法显示结果。 示例代码如下: ``` from pyspark.sql import SparkSession # 创建SparkSession对象 spark = SparkSession.builder.appName("ParquetHiveTable").enableHiveSupport().getOrCreate() # 读取Hive中的Parquet数据 df = spark.table("myhive.parquet_table") # 获取的模式 schema = df.schema # 应用查询条件并指定分区字段的值 df_filtered = df.filter("column1 > 10").where("partition_column = '2022-01-01'") # 选择要返回的列并显示结果 df_filtered.select("column1", "column2").show() ``` 在上面的代码中,我们假设Parquet格式Hive名为“myhive.parquet_table”,其中包含一个名为“column1”的非分区字段和一个名为“partition_column”的分区字段。我们使用filter()方法应用查询条件“column1 > 10”,并使用where()方法指定分区字段的值为“2022-01-01”。最后,我们选择要返回的列“column1”和“column2”,并使用show()方法显示结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值