以前 编过 一个 小程序 是 全排列的 递归算法;
[size=x-large]
[color=green]最近看一些数据结构的 书籍,看到 图论 里面有个 哈密顿回路问题,想想 好像 如果给定的图是 全联通图的 话 那么 经过 该算法 所输出的 也就是 全排列 问题,当然 这只是 一种哈密顿的特殊情况罢了[/color]。[/size]
贴一下 代码,先贴个 递归的吧:
#include<iostream>
using namespace std;
int arr[10];
void swap(int i,int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
void perm(int k,int m)
{
int i;
if(k==m)
{
for(i=0;i<=m;i++)
cout<<arr[i]<<" ";
cout<<endl;
}
else
{
for(i=k;i<=m;i++)
{
swap(k,i);
perm(k+1,m);
swap(k,i);
}
}
}
int main()
{
for(int i=0;i<10;i++)
arr[i] = i+1;
perm(0,3);
for( i=0;i<10;i++)
cout<<arr[i]<<" ";
return 0;
}
[size=x-large]
[color=green]最近看一些数据结构的 书籍,看到 图论 里面有个 哈密顿回路问题,想想 好像 如果给定的图是 全联通图的 话 那么 经过 该算法 所输出的 也就是 全排列 问题,当然 这只是 一种哈密顿的特殊情况罢了[/color]。[/size]
贴一下 代码,先贴个 递归的吧:
#include<iostream>
using namespace std;
int arr[10][10];
int s[10];
int visited[10];
int count = 0;
int n;
void dfs(int k)
{
visited[k]=1;s[count++]=k;
if(n==count)
{
for(int j=0;j<n;j++)
cout<<s[j]<<" ";
cout<<endl;w
}
for(int i=0;i<n;i++)
{
if(arr[k][i]&&!visited[i])
dfs(i);
}
visited[k] = 0;
count--;
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>arr[i][j];
for( i=0;i<n;i++)
dfs(i);
return 0;
}