全排列的新思路

以前 编过 一个 小程序 是 全排列的 递归算法;
#include<iostream>
using namespace std;
int arr[10];
void swap(int i,int j)
{
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
void perm(int k,int m)
{
int i;
if(k==m)
{
for(i=0;i<=m;i++)
cout<<arr[i]<<" ";
cout<<endl;
}
else
{
for(i=k;i<=m;i++)
{
swap(k,i);
perm(k+1,m);
swap(k,i);
}

}
}
int main()
{
for(int i=0;i<10;i++)
arr[i] = i+1;
perm(0,3);
for( i=0;i<10;i++)
cout<<arr[i]<<" ";
return 0;
}

[size=x-large]
[color=green]最近看一些数据结构的 书籍,看到 图论 里面有个 哈密顿回路问题,想想 好像 如果给定的图是 全联通图的 话 那么 经过 该算法 所输出的 也就是 全排列 问题,当然 这只是 一种哈密顿的特殊情况罢了[/color]。[/size]
贴一下 代码,先贴个 递归的吧:

#include<iostream>
using namespace std;
int arr[10][10];
int s[10];
int visited[10];
int count = 0;
int n;
void dfs(int k)
{
visited[k]=1;s[count++]=k;

if(n==count)
{
for(int j=0;j<n;j++)
cout<<s[j]<<" ";
cout<<endl;w
}
for(int i=0;i<n;i++)
{
if(arr[k][i]&&!visited[i])
dfs(i);
}
visited[k] = 0;
count--;


}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>arr[i][j];
for( i=0;i<n;i++)
dfs(i);
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值