机器学习
OOC_ZC
OOC
展开
-
梯度下降法
本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。前言:上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是 stanford的machine learning公开课,在verycd可下转载 2017-07-19 11:34:12 · 245 阅读 · 0 评论 -
ROC、AUC、Recall、Precision、Accuracy、F1、PRC 是什么?
这些都是评价分类器性能的指标。二分类问题为例: 图片来自网络Accuracy(准确率): (TP + TN) / (TP + TN + FN + FP)准确率指标的问题在于如果问题为偏斜类(Skewed classes),比如真实值中正反比例为 99:1,那预测值无脑预测均为正值,准确率就可达99%,而反例则一个也预测不出来,显然是不可理的。由此有了Precision(精确率...原创 2018-05-03 15:28:44 · 5123 阅读 · 1 评论 -
scipy中稀疏矩阵coo_matrix, csr_matrix 的使用
当对离散数据进行拟合预测时,往往要对特征进行onehot处理,但onehot是高度稀疏的向量,如果使用List或其他常规的存储方式,对内存占用极大。 这时稀疏矩阵类型 coo_matrix / csr_matrix 就派上用场了!这两种稀疏矩阵类型csr_matrix存储密度更大,但不易手工构建。coo_matrix存储密度相对小,但易于手工构建,常用方法为先手工构建coo_matrix,如...原创 2018-03-19 13:40:23 · 7898 阅读 · 0 评论 -
sklearn 中 LabelEncoder transform时 ValueError 错误
当使用LableEncoder对数据进行编码时,先fit数据,在transform时如果遇到fit时没有遇过的数据,程序会抛出ValueError异常。 这里相对fit时没遇过的数据统一编码为一个值。我的解决:x_train = LabelEncoder_list[i].fit_transform(dfTrain[feat].values) # fit并编号one-hottry: ...原创 2018-03-10 16:52:41 · 2732 阅读 · 0 评论 -
sklearn 中的 OneHotEncoder 用法
使用OneHotEncoder时遇到问题: 然后谷歌了一会,说Python可能是32bit的,然后查自己是64bit…没问题。 后来发现是用法不对,在使用fit时enc.fit([[23423, 1], [4534, 1], [4356, 1]])此处去fit的变量不能是String,同时也不能大于int的最大值,而我的数据很长 则需要先处理成int内的数值,再去fit成...原创 2018-03-07 14:35:41 · 6229 阅读 · 0 评论 -
Coursera Deep Learning 编程练习代码
Github地址: https://github.com/OOCZC/Coursera-DeepLearning原创 2018-01-15 23:20:47 · 1447 阅读 · 0 评论 -
Coursera Deep Learning 编程练习代码
Github地址: https://github.com/OOCZC/Coursera-DeepLearning原创 2018-01-04 23:45:21 · 405 阅读 · 0 评论 -
sklearn flow chart
A graphical overview of basic areas of machine learning, and guidance which kind of algorithms to use in a given situation.原创 2017-08-01 19:00:59 · 467 阅读 · 0 评论 -
最小二乘法
我们以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢? 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于转载 2017-07-19 14:32:40 · 355 阅读 · 0 评论 -
Coursera Deep Learning 课程中dz值的证明
Coursera Deep Learning 课程中直接给出了两层神经网络的dz值,而未予证明,这里进行简单证明。这里输出层的激活函数为sigmoid函数。原创 2018-01-05 16:16:16 · 336 阅读 · 0 评论