交通与航空领域的技术应用与发展
模糊模型在智能交通系统影响评估中的应用
在智能交通系统(ITS)的社会经济和定性影响评估中,采用了一种结合微观模拟软件和模糊模型的方法。
- 模拟运行与数据处理 :针对输入值,使用不同种子对模拟模型进行了10次运行,并对输出进行平均。数据解读后,将时间损失的论域定义为 <0 小时; 6000 小时>。
- 推理规则机制 :基于测试场景矩阵准备推理规则机制。该矩阵由输入参数的合理组合表示,而时间损失形式的输出值由 PARAMICS 给出。测试矩阵包含 54 个场景,这不仅为推理规则提供基础,也为部分隶属函数曲线提供基础。
- 模糊模型优化与校准 :
1. 减少隶属函数数量 :通过消除所有极值(最大值)距离小于 15 小时/事故的部分函数,减少了术语数量,大约减少了 40% 的部分隶属函数,从而提高了模糊模型的效能。
2. 校准交点 :将其余所有部分隶属函数的交点设置为 0.5。
- 误差率评估 :通过比较微观模拟软件输出(验证场景)和模糊模型输出(由质心法给出),计算出该方法的误差率。总体误差率在 <0%; 10%> 区间内,从 ITS 应用评估的角度来看,这是一个非常令人满意的结果,不会影响和扭曲成本效益分析(CBA)参数的整体值。
捷克城市的交通控制
现代城镇的发展高度依赖交通基础设施的进步,但当前捷克和欧洲许多城市面临交通拥堵、事故增
超级会员免费看
订阅专栏 解锁全文
2770

被折叠的 条评论
为什么被折叠?



