AcWing 122. 糖果传递
有 n 个小朋友坐成一圈,每人有 a[i] 个糖果。
每人只能给左右两人传递糖果。
每人每次传递一个糖果代价为 1。
求使所有人获得均等糖果的最小代价。
输入格式
第一行输入一个正整数 n,表示小朋友的个数。
接下来 n 行,每行一个整数 a[i],表示第 i 个小朋友初始得到的糖果的颗数。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤n≤1000000,
0≤a[i]≤2×109,
数据保证一定有解。
输入样例:
4
1
2
5
4
输出样例:
4
题意:n个小朋友围成一圈,每人有ai个糖果,可以相邻传递糖果,糖果传递每个每人花费一代价,求糖果平均的最小代价
在计算围圈情况之前最好先理解坐成一排的情况解法
n个小朋友排成一排,每人有ai个糖果,可以相邻传递糖果,糖果传递每个每人花费一代价,求糖果平均的最小代价
设有4个小朋友,平均值为b,定义xi为第i个小朋友给第i+1个小朋友的糖果数,若数量不足b则xi为负数
可以列式得出
a1+0-x1=b
a2+x1-x2=b
a3+x2-x3=b
a4+x3-0=b
分析所求的代价即是传递的xi的绝对值和,即|x1|+|x2|+|x3|
继续处理方程
x1=a1-b
x2=a1-b+a2-b
x3=a3-b+a2-b+a1-b
此时定义ci为糖果数ai减去平均值b的值
x1=c1
x2=c1+c2
x3=c1+c2+c3
将ci进行前缀和处理,可见xi绝对值的和即是每个小朋友糖果数减去平均值在进行前缀和处理后的和,即
|x1|+|x2|+|x3|=|s1|+|s2|+|s3|
因此在排成一排的情况下, 前缀和绝对值总和即为所求
回到围圈做法,按照类似的方式处理,注意的是围成环后第4个小朋友同样可以给第1个小朋友传递糖果
a1+x4-x1=b
a2+x1-x2=b
a3+x2-x3=b
a4+x3-x4=b
x1=x4-(b-a1)
x2=x4-(b-a1+b-a2)
x3=x4-(b-a1+b-a2+b-a3)
x4=x4-(b-a1+b-a2+b-a3+b-a4)
同样将b-ai化简为ci,并进行前缀和处理为si,则
xi=x4-si
|x1|+|x2|+|x3|+|x4|=|x4-s1|+|x4-s2|+|x4-s3|+|x4-s4|
这里可以看出如果要找出最小值即要找出一个值x4,使它减去各s值得和最小,在数轴上体现来看,即为找到一点,使其到各si点的距离和最短
至此,此题简化为计算出各si的值,并找到数轴上一点使距离和最短,即是AcWing 104. 货仓选址
简单来说,当坐标数量为奇数时,取中点为目标点,当坐标数量为偶数时,取两中点之间的任意一点都可为目标点
找出目标点后计算和值即可
import java.io.*;
import java.util.*;
public class Main {
static Scanner tab = new Scanner(System.in);
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
static int N = 1000010;
public static void main(String[] args) throws IOException {
int a[]=new int [N];//糖果数
long c[]=new long [N];//差值前缀和
int n=tab.nextInt();
long sum=0;
for(int i=1;i<=n;i++) {
a[i]=tab.nextInt();
sum+=a[i];
}
long ave=sum/n;
for(int i=1;i<=n;i++) {//前缀和处理
c[i]=ave-a[i]+c[i-1];
}
Arrays.sort(c,1,n+1);
long k=c[(n+1)/2];//找出中位数即xn选址
long res=0;
for(int i=1;i<=n;i++) {//求和
res+=Math.abs(k-c[i]);
}
System.out.println(res);
}
}
鼻炎患者遭不住了