算法——结合实例了解深度优先搜索(DFS)

一,深度优先搜索(DFS)详解

DFS是什么?

深度优先搜索(Depth-First Search,DFS)是一种用于遍历或搜索树、图的算法。其核心思想是尽可能深地探索分支,直到无法继续时回溯到上一个节点,尝试其他分支。DFS的实现通常基于递归或**栈(后进先出)**结构,适合解决路径存在性、状态可达性问题,但不保证找到最短路径。

与BFS的区别

  • BFS逐层展开,适合找最短路径。
  • DFS沿单一分支深入,可能更快找到解,但路径不一定最短。

DFS实现步骤

以递归实现为例,步骤如下:

  1. 终止条件:检查当前节点是否为目标(如到达终点)。
  2. 标记访问:将当前节点标记为已访问,避免重复处理。
  3. 递归探索:遍历当前节点的所有相邻节点,对未访问的节点递归调用DFS。

栈实现步骤

  1. 将起始节点压入栈。
  2. 循环执行以下操作直到栈空:
    • 弹出栈顶节点。
    • 若未访问,标记为已访问并处理。
    • 将该节点的未访问相邻节点压入栈。

注意事项

1. 剪枝优化

在深度优先搜索中,剪枝是一种非常重要的优化策略。它的核心思想是在搜索过程中,判断某些路径是否不可能到达终点,如果确定不可能,则提前终止对这条路径的搜索,从而减少不必要的计算量,提高搜索效率 。以走迷宫为例,假设我们在迷宫中搜索从起点到终点的路径,当我们走到某个位置时,通过计算发现从这个位置无论怎么走,剩余的步数都无法到达终点(比如剩余的步数小于从当前位置到终点的曼哈顿距离),那么就可以直接放弃对这个位置后续路径的搜索 ,这就是一种简单的剪枝操作。再比如,在一个复杂的迷宫中,如果我们已经走过了一条很长的死胡同,那么当再次遇到类似的路径开头时,就可以直接判断这条路径很可能也是死胡同,从而提前剪枝 。剪枝可以大大减少搜索的空间和时间复杂度,尤其是在处理大规模问题时,效果更为显著 。

2. 避免重复访问

在 DFS 中,标记已访问节点是至关重要的。如果不标记已访问节点,当搜索到一个节点时,可能会不断地重复访问它,从而陷入死循环 。比如在一个图结构中,如果存在环,不标记已访问节点就会导致在环上无限循环 。为了避免这种情况,我们通常使用一个数组或集合来记录节点的访问状态 。在走迷宫的例子中,我们使用二维布尔数组visited来记录每个位置是否被访问过 ,当访问一个新位置时,首先检查visited数组中对应位置的值,如果为true,则说明该位置已经被访问过,不再进行处理;如果为false,则将其标记为true,并继续进行搜索 。在处理图的 DFS 时,也可以使用一个哈希集合来记录已访问的节点,这样可以快速判断一个节点是否已经被访问过 。避免重复访问不仅可以防止死循环,还可以提高搜索效率,因为不需要对已经访问过的节点进行重复处理 。

3. 边界条件处理

在实现 DFS 时,仔细考虑边界条件是确保程序正确性和稳定性的关键 。边界条件包括节点超出范围、数组越界等情况 。以走迷宫为例,在判断一个位置是否可以访问时,需要检查该位置的坐标是否在迷宫的范围内 。如果迷宫是一个n * m的二维数组,那么位置(x, y)必须满足0 <= x < n且0 <= y < m,否则就超出了边界 。在马走日的例子中,当计算马的下一步位置时,同样要检查新位置是否在棋盘内 。如果不处理这些边界条件,程序可能会访问到非法的内存位置,导致运行时错误,如数组越界异常等 。因此,在编写 DFS 代码时,一定要在递归调用之前,仔细检查边界条件,确保程序的健壮性 。


二,实例解析

实例1:中国象棋中马的日字形移动

在这里插入图片描述

问题描述
马从起点 (x, y) 出发,按“日”字形移动(横向±1且纵向±2,或横向±2且纵向±1)ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值