36、智能电网与物联网中的太阳能能源预测及设备能源监测

智能电网与物联网中的太阳能能源预测及设备能源监测

一、太阳能能源预测相关模型
  1. 长短期记忆网络(LSTM)
    • 工作原理 :每个LSTM单元维护一个单元状态$C_t$,可看作是记忆单元。记忆状态通过输入门$I_t$、遗忘门$F_t$和输出门$O_t$进行控制。它接收当前输入$X_t$和前一个记忆状态$C_{t - 1}$。其整体公式如下:
      [
      \begin{align }
      I_t&=\sigma(W_{xi}X_t + W_{hi}H_{t - 1}+ W_{ci}C_{t - 1}+\beta_i)\
      F_t&=\sigma(W_{xf}X_t + W_{hf}H_{t - 1}+ W_{cf}C_{t - 1}+\beta_f)\
      C_t&=F_tC_{t - 1}+I_t\tanh(W_{xc}X_t + W_{hc}H_{t - 1}+\beta_c)\
      O_t&=\sigma(W_{xo}X_t + W_{ho}H_{t - 1}+ W_{co}C_{t - 1}+\beta_o)\
      H_t&=O_t\tanh(C_t)
      \end{align
      }
      ]
    • 优势与应用 :LSTM单元的主要优势在于它能存储时间段$t$内积累的单元状态,避免了长期依赖问题,适用于时间序列分析和序列学习问题。还可通过窗口技术、时间步长和批次间的记忆进行扩展。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值