15、保障SIP安全:抵御DoS攻击的可扩展机制

保障SIP安全:抵御DoS攻击的可扩展机制

在当今的网络通信环境中,会话发起协议(SIP)作为VoIP等实时通信服务的核心协议,面临着各种拒绝服务(DoS)攻击的威胁。为了有效抵御这些攻击,我们需要一套强大且可扩展的防护机制。本文将详细介绍一种基于SIP的安全防护方案,包括其过滤规则、系统架构、实现细节以及性能测试结果。

1. SIP过滤规则

为了确保SIP通信的安全性,我们采用了多种过滤规则,包括状态验证、速率限制和对话级过滤。
- 状态验证过滤 :使用表格结构 {Transaction ID, Timestamp, State, Acceptable message codes, Next state} 来管理SIP事务的状态转换。该表格适用于速率限制和状态验证两种类型的基于方法的过滤器。
- 速率限制过滤
- 过滤非标准的1xx(除100和180)、非标准的2xx(除200)以及300 - 699响应,根据网络参数将每秒的响应数量限制在有限范围内。
- 对来自单个源IP和相同From URI的INVITE请求(出站代理),以及发往单个目标IP和To URI的INVITE请求(入站代理)进行速率限制。新的INVITE请求与表格中相同的INVITE请求的时间戳差异应在一秒内,否则请求将被拒绝。
- 对话级过滤 :使用消息的对话ID来识别虚假的BYE消息,并拒绝不属于现有对话的BYE消息。过滤需要一个简单的表格结构 {Dialog ID, Timestamp}。

2. 系统架构与实现

我们部

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值