33、虚拟内存管理技术解析

虚拟内存管理技术解析

1. 页面错误频率控制

在虚拟内存管理中,防止系统颠簸(thrashing)是一个重要的问题。颠簸会导致高页面错误率,因此控制页面错误率是关键。页面错误频率(Page - Fault Frequency,PFF)策略提供了一种直接控制页面错误率的方法。
- 控制原理 :设定页面错误率的上下限。当实际页面错误率超过上限时,为进程分配一个额外的帧;当页面错误率低于下限时,从进程中移除一个帧。
- 可能的操作 :如果页面错误率增加且没有可用的空闲帧,需要选择某个进程并将其挂起,然后将释放的帧分配给页面错误率高的进程。

2. 内存映射文件

内存映射文件是一种利用虚拟内存技术将文件 I/O 视为常规内存访问的方法,能显著提高 I/O 性能。
- 工作集与页面错误率的关系 :进程的工作集和其页面错误率有直接关系。通常,进程的工作集会随时间变化,页面错误率也会在高峰和低谷之间转换。当开始对新的局部性进行按需分页时,页面错误率会达到峰值;当新局部性的工作集进入内存后,页面错误率下降。
- 基本机制
- 内存映射文件通过将磁盘块映射到内存中的页面来实现。初始访问文件时,通过普通的按需分页进行,会导致页面错误。之后,将文件的一个页面大小的部分从文件系统读入物理页面。
- 后续对文件的读写操作作为常规内存访问处理,简化了文件访问和使用,避免了使用 read() write() 系统调用的开销,提高了文件访

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值