机器学习
opencv_2012
这个作者很懒,什么都没留下…
展开
-
KKT条件和拉格朗日对偶
KKT条件是拉格朗日乘子法的泛化,利用KKT条件,既可以求解等式约束为题也可以求解不等式约束问题,而拉格朗日乘子法,只能处理等式约束问题,直接上KKT条件; 主要参考陈宝林《最优化理论与算法》,理个脉络出来。证明见原书。为了后面的svm说明,这里不上等式约束,个别符号也有变化。 (1) 要解决的问题: (2) Fritz John条件 若在处可微,在处连续,则 如果是问题(1)...原创 2020-02-03 09:35:54 · 759 阅读 · 0 评论 -
线性SVM和软间隔SVM
参考: 1, 西瓜书 2,https://www.cnblogs.com/massquantity/p/10920043.html 1,给定训练样本集D = {(, ), (, ), ... (, )},{-1, +1}, i = 1, 2, ..., m 现在要找一个超平面,使得对于任意的(, )D,有: 2,支持向量 使得等式或者成立的向量(一个样本)称...原创 2019-10-05 15:02:41 · 330 阅读 · 0 评论