1034. 有理数四则运算(20)


本题要求编写程序,计算2个有理数的和、差、积、商。


输入格式:


输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。


输出格式:


分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。


输入样例1:
2/3 -4/2
输出样例1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例2:
5/3 0/6
输出样例2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf

//过程中必须使用long,不能用int,因为过程中可能超过int的范围


#include<iostream>
#include<string>
#include<sstream>
using namespace std;
long MaxY(long a,long b)
{
long min, max;
max=a>b?a:b;
min=a<b?a:b;
if(max%min==0)
return min;
else
return MaxY(min,max%min);
};
void fun(string s,long& a,long& b)
{
bool flag=true;

stringstream ssf1,ssf2;
ssf1<<s.substr(0,s.find('/'));
ssf1>>a;
ssf2<<s.substr(s.find('/')+1,s.length()-s.find('/')-1);
ssf2>>b;
return;
};


void show(long a,long b)
{
bool flag=true;
if(a<0 && b<0)
{
a=0-a;
b=0-b;
}
else if(a>0 && b<0)
{
flag=false;
b=0-b;
}
else if(a<0 && b>0)
{
flag=false;
a=0-a;
}

if(a==0)
{
cout<<"0";
return;
}
if(b==0)
{
cout<<"Inf";
return;
}
if(flag==false)
{
cout<<"(-";
}
if(a>=b)
{
cout<<a/b;
a=a%b;
if(a!=0)
{
cout<<" ";
}
}
if(a!=0)
{
long t=MaxY(a,b);
a=a/t;
b=b/t;
cout<<a<<"/"<<b;
}

if(flag==false)
{
cout<<")";
}
return;
}


int main()
{
string s1,s2;
cin>>s1>>s2;
long a1,a2,b1,b2;
fun(s1,a1,a2);
fun(s2,b1,b2);

show(a1,a2);
cout<<" + ";
show(b1,b2);
cout<<" = ";
show(a1*b2+b1*a2,a2*b2);
cout<<endl;

show(a1,a2);
cout<<" - ";
show(b1,b2);
cout<<" = ";
show(a1*b2-b1*a2,a2*b2);
cout<<endl;

show(a1,a2);
cout<<" * ";
show(b1,b2);
cout<<" = ";
show(a1*b1,a2*b2);
cout<<endl;

show(a1,a2);
cout<<" / ";
show(b1,b2);
cout<<" = ";
show(a1*b2,a2*b1);
cout<<endl;
return 0;

### 回答1: 1034题目要求我们进行有理数四则运算,包括加、减、乘、除四种运算。 有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。有理数四则运算规则与整数相同,但需要注意分母的处理。 加法:将两个有理数的分母取最小公倍数,然后将分子相加即可。 减法:将两个有理数的分母取最小公倍数,然后将分子相减即可。 乘法:将两个有理数的分子相乘,分母相乘即可。 除法:将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘即可。 需要注意的是,在进行四则运算时,需要将结果化简为最简形式,即分子与分母的最大公约数为1。 ### 回答2: 1034 有理数四则运算是数学中的一项重要的基础知识,需要我们掌握有理数的加、减、乘、除四则运算有理数是指可以表示为两个整数之比的数,其包括正整数、负整数、0以及正分数、负分数。 有理数的加法,即将两个有理数相加,可以先将两个有理数的分母取相同的公共分母,然后将分子相加即可。例如:$\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}$。 有理数的减法,即将两个有理数相减,可以先将两个有理数的分母取相同的公共分母,然后将分子相减即可。例如:$\frac{4}{5} - \frac{2}{5} = \frac{4-2}{5} = \frac{2}{5}$。 有理数的乘法,即将两个有理数相乘,可以直接将两个有理数的分子乘起来,分母乘起来即可。例如:$\frac{3}{4} \times \frac{2}{5} = \frac{3 \times 2}{4 \times 5} = \frac{6}{20} = \frac{3}{10}$。 有理数的除法,即将两个有理数相除,可以将被除数乘以除数的倒数即可。例如:$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。 需要注意的是,在进行有理数四则运算时,需要小心分母为0的情况,因为分母为0的有理数有意义的。另外,一些复杂的计算需要我们掌握一些运算技巧和方法,比如约分、分解质因数、分子因式分解等。 总之,掌握有理数四则运算是数学中的基本功,不仅能够帮助我们更好地理解和应用数学,还能够提高我们的数学素养和思维能力。 ### 回答3: 1034题目要求我们对有理数进行四则运算有理数既包括整数又包括分数,四则运算包括加减乘除四种运算。 首先,加法。加法是把两个数的值相加,这是我们日常生活中最常见的运算之一,非常简单。加法的步骤是:把两个数的分子通分后相加,同时将分数进行约分。 其次,减法。减法和加法很相似,只是要把一个数的值从另一个数的值中减去。减法的步骤是:将减数取相反数,然后按照加法的方法进行操作。 然后是乘法。乘法是把两个数的值相乘,可以看做是多个加法。乘法的步骤是将两个数的分子、分母分别相乘,然后将所得的分数进行约分。 最后是除法。除法是把一个数的值除以另一个数的值,除法的步骤是将除数取倒数,然后按照乘法的方法进行操作。需要注意的是,在除法中,除数不能为零。 综上所述,1034题目中的有理数四则运算可以分为四种:加法、减法、乘法、除法。针对每种运算,我们需要按照特定的步骤进行计算。需要注意的是,在进行运算的过程中,一定要注意分数的通分和约分,保证结果的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值