2025年4月,北京亦庄举办了一场前所未有的人形机器人马拉松。这场赛事汇聚了近百台由中国本土企业和研究机构打造的人形机器人“选手”,不仅成为社交网络上的热门话题,也被视为人形机器人技术发展的一次公开测验。然而,在技术光环之下,比赛所揭示的问题同样值得深思。
尽管“天工Ultra”等少数机器人完成了全程21公里赛道,但多数机器人在过程中出现摔倒、失衡、撞击护栏,甚至完全失去行动能力,不得不由技术人员干预。这场马拉松,本质上不是一场比拼速度的竞技,更像是一面照妖镜,照出了现实中人形机器人在稳定性、环境适应性、续航能力等方面的巨大挑战。
首先是控制稳定性的问题。尽管许多机器人采用了先进的双足步态算法,但在实际路况下——如坡道、弯道、地砖缝隙等复杂环境中,仍频频出现跌倒、关节卡顿等失控现象。实验室里的行走演示,并不代表能应对真实世界的微妙扰动。机器人要走得稳、走得远,仍需跨越算法、机械结构与感知系统协同演进的高门槛。
其次是续航能力和能效比的短板。在这次马拉松中,多台机器人无法依靠单块电池完成全部赛程,不得不采取中途换电甚至“接力跑”的方式完成任务。这暴露出当前机器人系统在能耗控制和热管理方面依旧存在明显不足。人类仅靠一顿早餐就能完成全马,而机器人则消耗了几十倍、上百倍的能量。
更大的问题出现在环境感知与适应性上。许多机器人只能依赖预设程序行走,缺乏灵活应对突发情况的能力。例如遇到人类选手突然靠近、地面有小石子或阴影时,部分机器人会直接停滞或偏航,甚至发生意外碰撞。这说明目前机器人在“感知-决策-动作”闭环上仍有较大缺口,环境理解与动态应变能力远远落后于人类。
这场马拉松也被不少业内人士称作是“具身智能”的一次现实检验。所谓“具身智能”(Embodied Intelligence),并不是给AI装上四肢那么简单,而是一种深度融合感知、动作与认知的智能形式。它强调智能必须扎根在真实的物理身体中,能够通过与环境的互动不断自我学习与进化。
然而,要实现真正的具身智能,仅有机械身体远远不够,更关键的是赋予机器人一个“智慧的大脑”。这个大脑,必须像人类一样,具备低数据学习能力、高性能决策效率、极低的能耗和强大的自主可控性。人类看几次就能学会跳绳,机器人却需要成千上万次仿真训练才能勉强复现。这背后不仅是算法落差,更是整个智能架构层面的差距。
未来的人形机器人如果想具备真正的具身智能,必须依托一套类脑智能系统。这一系统要具备强大的迁移学习能力,在新环境下能够快速适应任务;要有更高的决策效率,在复杂环境中做出实时判断;更重要的是,要有极低的能耗,让机器人可以长时间独立运行,而不是像现在这样频繁充电、临时抢修。同时,它还必须是完全自主可控的,从底层芯片、模型框架到算法逻辑,构建起安全可靠、可演化的本土智能体系。
如果说亦庄马拉松是一次真实世界中的技术演练,那么它也在提醒我们:人形机器人、具身智能,距离真正的广泛落地,还有很长一段技术马拉松要跑。从感知到理解,从决策到动作,从硬件到智能,科技的每一步突破都需要时间、积累与长期主义的坚持。我们刚刚起跑,终点却不遥远。
公众号:OpenSNN