2025年伯克希尔·哈撒韦股东大会上,巴菲特对AI的态度依然显得冷静而理性。他不否认人工智能是改变游戏规则的技术力量,但也强调,人类判断力在复杂决策中仍无法被取代。他的比喻很生动:宁愿选择保留保险业务负责人阿吉特·贾恩的判断力,也不愿用1000亿美元押注未来10年的AI。这种克制反映出一种成熟的技术观——在泡沫中看本质,在热潮中找价值。
在这场AI浪潮中,伯克希尔的策略可以归结为三步走:先观察,再准备,最后行动。其保险业务如GEICO已开始小范围试点AI工具,例如用AI评估房屋洪水风险。但值得注意的是,他们并未盲目追逐算法模型本身,也不会投资那些专注算法堆砌或数据标注的公司,而是强调AI如何切实提高已有业务效率。
这种思路与当前部分AI热点追逐形成鲜明对比。在国内外资本市场,AI大模型、超算中心、百亿参数成为关键词,追逐算力成为显学。但伯克希尔更关心的是“能否在实际业务中提升5%的效率”。比如,巴菲特直言:“AI能让铁路运输效率提高5%,才值得我们关注。”这句话背后体现出一个核心理念:AI不应脱离场景空转,而要成为“可解释、低算力、类脑化”的现实工具。
首先,“类脑智能”成为一个重要方向。与过去以暴力计算堆叠为特征的大模型不同,真正贴近人类决策逻辑的AI系统应具备更强的通用性、情境理解能力与学习效率。保险业务的决策往往涉及模糊、不确定的信息判断,这要求AI不仅要有逻辑判断,还要贴近人类的思维方式——这就是类脑智能所强调的价值。
其次,低功耗与低算力成为AI落地的重要前提。伯克希尔不会投资那些需要天量GPU资源、却缺乏商业闭环的AI项目。他们关注的是边缘部署、能耗优化、嵌入式AI等方向。现实中,小型保险案件如车险理赔已被AI自动处理,这类系统依赖的并非超算集群,而是高效、低算力模型。这种节能高效的AI才有望真正规模化落地。
再者,“可解释性”成为技术伦理的重要基石。巴菲特始终强调透明和责任。在金融、保险等高风险行业中,一个不可解释的AI决策系统无法获得信任。伯克希尔将AI用于辅助而非替代人类,正是出于对可解释性的坚持。大案子仍由经验丰富的团队审核,小案子交由AI处理,是一种人机协同的实践方案。
AI只是工具,行业才是场景。伯克希尔内部奉行“行业+AI”而非“AI+行业”的路径,这与部分创业公司为AI而AI的模式背道而驰。技术并不自动带来价值,只有当它真正融入产业、解决实际问题时,才可能带来稳定回报。这也是巴菲特一贯强调的“能力圈”原则:不投资自己看不懂的东西。
从投资角度看,巴菲特没有直接投资AI公司,却通过微软、苹果等稳健企业间接参与AI红利。值得一提的是,他对苹果的评价依然极高——不仅因为产品力,更因为其构建了软硬件协同的数据闭环,为AI服务提供了现实基础。这种“稳中有变”的策略,既能分享技术红利,又能规避纯AI公司的估值泡沫。
2025年的AI已进入实际应用阶段,但仍处于技术红利的早期释放期。在这个阶段,盲目逐风口不如冷静审视行业需求。我们从巴菲特身上学到的,不是技术乐观或技术恐慌,而是理性与克制的智慧。
对普通投资者来说,把握AI的本质、理解“类脑化、低功耗、低算力、可解释性”的价值方向,远比押注下一个AI独角兽更重要。未来不是属于最喧嚣的那群人,而是属于那些静静耕耘、深耕实际、敢于等待泡沫消退之后才动手的人。
技术更替不断,唯有价值恒久。
公众号:OpenSNN