深度学习
文章平均质量分 92
会飞的烤鸭1995
这个作者很懒,什么都没留下…
展开
-
GAN论文研读(一)-----GAN与cGAN
GAN论文研读(一)—–GAN与cGAN 一开学就被各种杂事围攻,也没有心情写博文,不知不觉间已经四个多月没冒泡了(好吧我就是找了个借口~)。考虑到之前写的几篇博文一直没人点踩(zan),在小C同学的启发下,接下来的文章我将以专题的形式发布。1. 引言 深度学习在图像分类、自然语言处理等领域已取得了卓越的成就。在GAN被提出之前,这些成就主要出现在判别式模型中,通过将高维特征映原创 2018-02-02 10:21:20 · 8346 阅读 · 4 评论 -
GAN论文研读(二)-----DCGAN
GAN论文研读(二)—–DCGAN1. 卷积与转置卷积 cGAN初步解决了GAN不能生成具有特定属性的图片这一问题,但是,GAN难训练,容易出现大量无效图片的弱点仍未得到改善。为此,Alec Radford等人[1]将卷积神经网络框架引入GAN中,替代原先的多层感知机模型,大大提升了GAN生成图片的稳定性。该论文虽没在理论上进行大量推导,但在GAN的工程实现上做出了不小的贡献。原创 2018-02-02 10:21:50 · 4503 阅读 · 1 评论 -
GAN论文研读(三)-----WGAN
回想之前提到的一种极端情况,如果判别器能力极强,G" role="presentation">GGG生成的任何图像他都能轻易辨识出,那么G" role="presentation">GGG其实学不到任何东西,即G" role="presentation">GGG的梯度弥散问题会十分严重。WGAN的作者正是从该点得到启发,将Earth-Mover距离引入GAN模型中,理论上解决了G" role="p原创 2018-02-02 10:22:13 · 2490 阅读 · 0 评论 -
GAN论文研读(四)-----Cycle GAN 与 Star GAN
1. Cycle GAN与图像风格转换 WGAN后,GAN生成图像不稳定的问题已基本解决,剩余的缺点以难以盖过它的优点。在这种情况下,Jun-Yan Zhu等人将GAN的应用推广到图像风格转换领域,并基于此给出了许多有趣的应用。图像风格转换一般需要一对图像作为训练样本,但是成对的训练样本在现实生活中往往是难以得到的,鉴于此,作者在Cycle GAN中取消了成对样本的限制,直接使用具有不同风格原创 2018-02-02 10:22:42 · 7684 阅读 · 0 评论