出入栈 九度1547 卡特兰数 快速幂取余

慢慢也发现自己的确跟不上节奏了。明明ACM该是个狠好的选择。可是时间至此时此刻,不能说没有机会 只能说甚微了。为了自己的保研大业,在各种oj上乱刷几题,也算是对自己的安慰。


题目:http://ac.jobdu.com/problem.php?pid=1547

题意:给一个空栈和n步操作,保证每一步操作合法并且最终结果保证粘依旧为空。

思路:奇数次操作一定输出0,然后dfs输出偶数次操作前几项

n123456
a24681012
C(n)1251442132
发现是个卡特兰数。

卡特兰数递推公式:h(0)=h(1)=1 , h(n) = [(4*n-2)/n+1]*h(n-1) (n≥2)

同余定理:(a*b)%P=(a%P * b%P)%P   (a/b)%P=(a%P * 1/b %P)%P

费马小定理:a^(P-1) % P = 1 (P是质数)

根据费马小定理得:1/a %P = a^(P-2) % P  其中 a^(P-2) %P 利用快速幂取余的办法求得。

快速幂取余(a^b %P):把b拆分成2进制表示从右向左一位一位计算。当第n项为1时令前n项的结果乘以a^(2^(n-1)),并注意实时取余。

#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
using namespace std;

#define MOD 1000000007
typedef long long LL;

LL h[505];

LL exp_mod(LL a){
	LL b = MOD - 2;
	LL res = 1;
	while (b){
		if (b & 1)
			res = (res*a) % MOD;
		b >>= 1;
		a = (a*a) % MOD;
	}
	return res;
}

void init(){
	LL i;
	h[0] = h[1] = 1;
	for (i = 2; i <= 500; i++)
		h[i] = (((4 * i - 2) % MOD * exp_mod(i + 1)) % MOD * h[i - 1]) % MOD;
}

int main(){
	freopen("in.txt", "r", stdin);
	int n;
	init();
	while (scanf("%d", &n) != EOF){
		if (n % 2 == 0)
			printf("%lld\n", h[n / 2]);
		else printf("0\n");
	}
	return 0;
}


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值