ZCMU1934: ly的二叉树(卡特兰数算法+快速幂+逆元的求法)

ly的二叉树:

Description

某一天,ly正在上数据结构课。老师在讲台上面讲着二叉树,ly在下面发着呆。
突然ly想到一个问题:对于一棵n个无编号节点的有根二叉树,有多少种形态呐?你能告诉她吗?

Input

多组输入,处理到文件结束
每一组输入一行,一个正整数n(1≤n≤1000000),意义如题目所述。

Output

每组数据输出一行,包含一个正整数表示答案,由于数字可能非常大,你只需要把最后的结果对1000000007取模即可。

Sample Input

3

Sample Output

5

在做这道关于有n个结点的二叉树的多种形态的问题的时候,这个曾经也是阿里的面试题,经过分析这道题后输入的正整数可能会非常大,所以依靠单纯的卡特兰数算法可能会超时,先讲一下卡特兰数算法吧:

卡特兰数算法:

在维基百科上显示的资料:

卡塔兰数组合数学中一个常出现在各种计数问题中出现的数列

卡塔兰数的一般项公式为 C_n = \frac{1}{n+1}{2n \choose n} = \frac{(2n)!}{(n+1)!n!}     另类递归式:  h(n)=((4*n-2)/(n+1))*h(n-1);

这个其实非常好用,我总结了他的几个应用:

1.Cn表示长度2n的dyck word的个数。Dyck word是一个有n个X和n个Y组成的字串,且所有的部分字串皆满足X的个数大于等于Y的个数。以下为长度为6的dyck words:

XXXYYY XYXXYY XYXYXY XXYYXY XXYXYY

2.将上例的X换成左括号,Y换成右括号,Cn表示所有包含n组括号的合法运算式的个数:

((())) ()(()) ()()() (())() (()())

3.Cn表示所有在n × n格点中不越过对角线的单调路径的个数。一个单调路径从格点左下角出发,在格点右上角结束,每一步均为向上或向右。计算这种路径的个数等价于计算Dyck word的个数: X代表“向右”,Y代表“向上”。下图为n = 4的情况:

                                               

4.Cn表示通过连结顶点而将n + 2边的凸多边形分成三角形的方法个数。下图中为n = 4的情况:

                                                        

5.出栈次序问题。
       一个栈(无穷大)的进栈序列为1,2,3,..n,有多少个不同的出栈序列?
  类似:
  (1)有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
  (2)在圆上选择2n个点,将这些点成对连接起来,使得所得到的n条线段不相交的方法数。
3.将多边行划分为三角形问题。

  将一个凸多边形区域分成三角形区域的方法数?
  类似:一位大城市的律师在她住所以北n个街区和以东n个街区处工作。每天她走2n个街区去上班。如果她
  从不穿越(但可以碰到)从家到办公室的对角线,那么有多少条可能的道路?
  类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数?

6.给顶节点组成二叉树的问题。

  给定N个节点,能构成多少种形状不同的二叉树?
  (一定是二叉树!
  先去一个点作为顶点,然后左边依次可以取0至N-1个相对应的,右边是N-1到0个,两两配对相乘,就是h(0)*h(n-1) + h(2)*h(n-2) +  + h(n-1)h(0)=h(n))
  (能构成h(N)个)

快速求幂:

转自:https://www.cnblogs.com/lca1826/p/6748372.html

快速幂这个东西比较好理解,但实现起来到不老好办,记了几次老是忘,今天把它系统的总结一下防止忘记。

首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:

  假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时,a^11=a^(2^0+2^1+2^3)

  11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a^(2^0)*a^(2^1)*a^(2^3) ,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子....不急,下面会有详细解释。

        因为十进制数b可以用二进制表示为:b=b_{0}*2^{^{0}}+b_{1}*2^{^{1}}+b_{2}*2^{^{2}}+b_{3}*2^{^{3}}+...+b_{n}*2^{^{n}}其中bn表示b的二进制形式中的第n位。(其实就是个二进制转十进制公式)

故a的b次方可以表示为a^{b}=a^{b_{0}*2^{^{0}}+b_{1}*2^{^{1}}+b_{2}*2^{^{2}}+b_{3}*2^{^{3}}+...+b_{n}*2^{^{n}}}=a^{b_{0}*2^{0}}*a^{b_{1}*2^{1}}*a^{b_{2}*2^{2}}*a^{b_{4}*2^{4}}*...*a^{b_{n}*2^{n}}

这就是快速幂算法的理论公式了。

  由于是二进制,很自然地想到用位运算这个强大的工具: &  和 >> ,&运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。>>运算比较单纯,二进制去掉最后一位,不多说了,先放代码再解释。

long long int quickpow(long long int a,long long int b)//快速幂运算 
{
	a=a%mod;//取模 
	long long int res=1;//res用于记录结果 
	for(;b;b>>=1)
	{
		if(b&1)//如果二进制末尾是奇数,则执行下面的操作 
		{
			res=(res*a)%mod;
		}
		a=(a*a)%mod;//每次进行记录,用于下一个循环的累乘 
	}
	return res;//求好的幂 
}

代码很短,死记也可行,但最好还是理解一下吧,其实也很好理解,以b==11为例,b=>1011,二进制从右向左算,但乘出来的顺序是 a^(2^0) * a^(2^1)  * a^(2^3),是从左向右的。我们不断的让base*=base目的即是累乘,以便随时对ans做出贡献。

  其中要理解base*=base这一步,看:::base*base==base^2,下一步再乘,就是base^2*base^2==base^4,然后同理  base^4 * base4 = base^8 ,,,,, see?是不是做到了base-->base^2-->base^4-->base^8-->base^16-->base^32.......指数正是 2^i 啊,再看上面的例子,a¹¹ =  a^(2^0) * a^(2^1) * a^(2^3),这三项是不是完美解决了,,嗯,快速幂就是这样。

  顺便啰嗦一句,由于指数函数是爆炸增长的函数,所以很有可能会爆掉int的范围,根据题意决定是用 long long啊还是unsigned int啊还是mod某个数啊自己看着办。

  还有,矩阵快速幂的求法唯一的区别就是*换成矩阵中的乘法,写个函数代换嘛,思想一毛一样。

求逆元:

可将对商取模转换为对被除数和其除数关于1000000007的逆元,即:

(a / b) % p = (a % p * inv(b) % p) % p

将除数用其逆元替换,将除法转为乘法可得出不爆表的结果。

求逆元的公式为:

a关于b的逆元等于a^(b-2),(一般都是在普通求逆元会超范围的情况下会引入快速幂算法)。

下面代码片段:

long long int inv(long long int a,long long int b)//求逆元 
{
	return quickpow(a,b-2);
}	

接下来展示该题的代码:

/**********************
此题求有n个结点的树有多少种的形态
(大数取模求逆元) 
1.运用卡特兰数的递归算法
2.运用快速幂求逆元 
**********************/
#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007//在输出大数的时候就要取模 
int ans[1000000];//定义一个输出数组 
long long int quickpow(long long int a,long long int b)//快速幂运算 
{
	a=a%mod;//取模 
	long long int res=1;//res用于记录结果 
	for(;b;b>>=1)
	{
		if(b&1)//如果二进制末尾是奇数,则执行下面的操作 
		{
			res=(res*a)%mod;
		}
		a=(a*a)%mod;//每次进行记录,用于下一个循环的累乘 
	}
	return res;//求好的幂 
}
long long int inv(long long int a,long long int b)//求逆元 
{
	return quickpow(a,b-2);
}	
int main()
{
	long long int n, i;//n是输入的数 
	ans[0] = 0; ans[1] = 1;//ans数组进行统计 
	for (i = 2; i <= 1000000; i++)
	{
		ans[i]=ans[i-1] * (4 * i-2) % mod*inv(i+1, mod) % mod;//卡特兰数的递归表示 
	}
	while(scanf("%lld",&n)!=EOF)//输入n个结点,直接输出二叉树的多种形态 
	{
		printf("%d\n", ans[n]);
	}
	return 0;
}

如有错误,请帮忙指出,谢谢!

 

 

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值