描述
ben向往隐士生活。假设有一天ben和另外n-1个志同道合的人约好一起去隐居,并且他们已经找到了一个山清水秀,鸟语花香的神秘、绝佳去处。他们选出适宜居住n个位置后,又嫌交通不便,所以想修一些路将他们的居住场所连接起来。ben是个例外,他觉得既然隐居嘛,何必在乎交通呢。现在给定他们选出的n个居住地的坐标,请帮他们设计一种方案,也就是修n-2条路将其中n-1个居住地连接起来使修路的成本最小。(假设修路的成本与路的长度成正比)
输入
输入首先包含一个整数T,表示测试数据的组数。
每组测试数据的第一行是整数 n ,n的含义如上所述(0 < n < 50)
然后是 n 行数据。 每一行都包含两个整数 x 和 y (-20 < = x,y < = 20),表示某一个居住地的坐标。
输出
对于每组测试数据,请在一行中输出修路的最小总长度。 结果保留两位小数。
样例输入
2
5
0 0
1 0
18 0
0 1
1 1
3
0 0
1 0
0 1
样例输出
3.00
1.00
#include <iostream>
#include <cmath>
using namespace std;
#define SIZE 50
#define MAX 0x7ffffff
struct node{
int x,y;
};
double map[SIZE][SIZE],dir[SIZE];
node location[SIZE];
bool visited[SIZE];
double caldistance(node a,node b){
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int main(){
int t,n,i,j,r;
double low,min,path;
scanf("%d",&t);
while (t--){
scanf("%d",&n);
min=MAX;
for (i=0;i<n;i++)
scanf("%d%d",&location[i].x,&location[i].y);
memset(map,0,sizeof(map));
for (i=0;i<n;i++)
for (j=0;j<n;j++)
if (i!=j)
map[i][j]=map[j][i]=caldistance(location[i],location[j]);
for (r=0;r<n;r++){
memset(visited,false,sizeof(visited));
memset(dir,0,sizeof(dir));
path=0;
visited[r]=true;
for (i=0;i<n;i++)
dir[i]=map[r][i];
int tmp;
for (j=0;j<n-2;j++){
low=MAX;
for (i=0;i<n;i++)
if (!visited[i]&&dir[i]<low){
tmp=i;
low=dir[i];
}
visited[tmp]=true;
path+=dir[tmp];
for (i=0;i<n;i++)
if (!visited[i]&&map[i][tmp]<dir[i])
dir[i]=map[i][tmp];
}
if (path<min)
min=path;
}
printf("%.2lf\n",min);
}
return 0;
}