HDU 4784 Dinner Coming Soon DP

题意: 在k个平行空间中,n个点,由m条有向边连接起来,每条边有一个时间花费和金钱花费,同时,在每个点上,可以跳转到(ki+1)%k 的空间里,不同空间的边权值不变。另外,在每到达某个空间的某个顶点时,可以买一包盐,卖一包盐,或者什么也不做,买卖的时间不考虑。相同的顶点在不同的空间中盐的价格也不一定相同..现在给定顶点数n,边数m,盐的最大携带量b,空间数k,初始的金钱r,规定的时间t,问怎么走可以在t时间内从1到达n,并且使到达n时身上的金钱尽可能大。初始时身上一包盐也没有,并且只有在空间0的时候,才能访问顶点1和n,并且一旦到达顶点n,这个过程就要结束......


dp[i][j][k][l]: i时刻在j宇宙k城市有l包盐最多能

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <bitset>
#include <algorithm>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define pii pair<int,int>
#define LL long long
using namespace std;
const int MAXN = 210;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double eps = 1e-10;
int dp[MAXN][10][MAXN][10];
int price[10][MAXN];
vector<pair<int,pii > > g[MAXN];
int main()
{
    freopen("test.txt","r",stdin);
    int T;scanf("%d",&T);
    for(int cas = 1;cas <= T;cas++){
        int N,M,B,K,R,T;
        scanf("%d%d%d%d%d%d",&N,&M,&B,&K,&R,&T);
        for(int i = 0; i < K;i++)
            for(int j = 1; j <= N;j++)
                scanf("%d",&price[i][j]);
        for(int i = 0; i <= N;i++) g[i].clear();
        for(int i = 0; i < M;i++){
            int u,v,t,c;
            scanf("%d%d%d%d",&u,&v,&t,&c);
            g[u].pb(mp(v,mp(t,c)));
        }
        memset(dp,-1,sizeof(dp));
        dp[0][0][1][0] = R;
        for(int t = 0; t < T; t++)
            for(int kind = 0; kind < K;kind++)
                for(int u = 1; u < N; u++){
                    if((u == 1 || u == N) && kind != 0) continue;
                    for(int salt = 0;salt <= B;salt++){
                        if(dp[t][kind][u][salt] < 0) continue;
                        if(u != 1 && u != N){
                            for(int d = -1; d <= 1;d++){
                                int cc = price[kind][u] * d;
                                if(salt + d >= 0 && salt + d <= B && dp[t][kind][u][salt] >= cc){
                                    dp[t+1][(kind + 1) % K][u][salt + d] = max(dp[t][kind][u][salt] - cc,dp[t+1][(kind + 1) % K][u][salt + d]);
                       //             cout<<t + 1<<' '<<(kind + 1) % K<<' '<<u<<' '<<salt + d<<' '<<dp[t+1][(kind + 1) % K][u][salt + d]<<endl;
                                }
                            }
                        }
                        for(int i = 0; i < g[u].size();i++){
                            int v = g[u][i].fi;
                            if(kind != 0 && (v == 1 || v == N)) continue;
                            int w = g[u][i].se.fi;
                            int c = g[u][i].se.se;
                            int tt = t + w;
                            if(tt > T) continue;
                            if(u != 1 && u != N){
                                for(int d = -1; d <= 1;d++){
                                    int cc = c + price[kind][u] * d;
                                    if(salt + d >= 0 && salt + d <= B && dp[t][kind][u][salt] >= cc)
                                        dp[tt][kind][v][salt + d] = max(dp[tt][kind][v][salt + d],dp[t][kind][u][salt] - cc);
                       //             cout<<tt<<' '<<kind<<' '<<v<<' '<<salt + d<<' '<<dp[tt][kind][v][salt + d]<<endl;
                                }
                            }
                            else if(dp[t][kind][u][salt] >= c){
                                dp[tt][kind][v][salt] = max(dp[tt][kind][v][salt],dp[t][kind][u][salt] - c);
                     //           cout<<tt<<' '<<kind<<' '<<v<<' '<<salt<<' '<<dp[tt][kind][v][salt]<<endl;
                            }

                        }
                    }
                }
        int res = -1;
        for(int i = 1; i <= T;i++)
            res = max(res,dp[i][0][N][0]);
        if(res < 0) printf("Case #%d: Forever Alone\n",cas);
        else printf("Case #%d: %d\n",cas,res);
    }
    return 0;
}

有多少钱

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值