程序原理之_函数调用栈

    我们知道,递归算法可以很优雅简洁地解决一些复杂问题。其缺点在于,递归嵌套太深会导致栈溢出(stack overflow, 也是一个很出名的网站)

  我们用例子看一下递归和栈溢出,以下代码用递归函数计算1~1000累加:

def addN(n):    # python语言
    if n == 1:
        return 1
    return n + addN(n - 1)

n = 1000
res = addN(n)

    执行程序会报以下错误:

  RecursionError: maximum recursion depth exceeded in comparison

    这里还没有发生栈溢出,而是递归深度超过了python限定值,那么我们用下面代码改下限定值,代码能正常执行:

import sys
sys.setrecursionlimit(100000)  # 将递归深度阈值设定为10万

    但当我们将n值设置为10000时,代码执行还是会报错,此时报的是stack overflow, 原因是系统的堆栈容量有限。 那为什么递归算法这么消耗堆栈呢?

这是因为:在计算机系统里,一个函数调用另一个函数(call)一般就会消耗堆栈,递归算法中函数嵌套调用自身,导致堆栈不断生长最后溢出。

    从汇编来看,一个call调用包含两个指令,先是将当前程序指针(eip)入栈,然后将被调用函数的入口地址存入程序指针;被调函数执行的最后一步

是return, return对应的汇编指令就是将call时压入堆栈的地址出栈送给程序指针(eip), 具体的汇编语句如下:

call 0x12345     

     pushl %eip        //将当前程序指针存入堆栈

     movl $0x12345, %eip   //将被调用函数的入口地址传给程序指针,使程序执行跳转到被调用函数

ret   //对应函数中的return语句

    popl %eip         //将先前保存的程序指针恢复,使程序继续在主函数上执行

    由此函数调用栈的原理就很简单清楚了,也就很容易明白递归算法是怎么吃掉大量堆栈的。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值