[问与答]Python 中 __all__ 的作用 ?

本文解释了Python中__all__变量的作用,通过示例展示了如何在__init__.py文件中使用__all__来控制from module import *导入行为,确保只导入所需符号。
部署运行你感兴趣的模型镜像

你要是看Python的源码或者相关框架的源码,总是在 __init__.py 或者是源文件的开头看到一个 __all__ 变量的定义,今天就说说它的作用. orangleliu

问题出处

Can someone explain all in Python?

问题

我越来越多的使用Python了,经常看到 __all__ 变量再各种 __init__.py 文件中,谁能解释为什么那么做呢?

解答

它是一个string元素组成的list变量,定义了当你使用 from <module> import * 导入某个模块的时候能导出的符号(这里代表变量,函数,类等)。

举个例子,下面的代码在 foo.py 中,明确的导出了符号 bar, baz

__all__ = ['bar', 'baz']

waz = 5
bar = 10
def baz(): return 'baz'

导入实现如下:

from foo import *

print bar
print baz

# The following will trigger an exception, as "waz" is not exported by the module
# 下面的代码就会抛出异常,因为 "waz"并没有从模块中导出,因为 __all__ 没有定义
print waz

如果把 foo.py__all__ 给注释掉,那么上面的代码执行起来就不会有问题, import * 默认的行为是从给定的命名空间导出所有的符号(当然下划线开头的私有变量除外)。

注意

需要注意的是 __all__ 只影响到了 from <module> import * 这种导入方式,对于 from <module> import <member> 导入方式并没有影响,仍然可以从外部导入。

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

<think>我们来看用户的问题:理解代码中`.loc[len(df_sheet)]`的作用以及相关代码的功能。根据用户提供的代码片段:```pythondf_sheet.sort_values(by='sum',inplace=True,ascending=False)df_sheet=df_sheet.iloc[0:8]df_sheet.loc[len(df_sheet)]=row_925df_sheet.loc[len(df_sheet)]=row_1500df_sheet.loc[len(df_sheet)]=['⬆️','日期',f'{sheet_name}','⬆️','⬆️']```这里重点在于三行使用`.loc[len(df_sheet)]`的代码。在pandas中,`DataFrame.loc[]`主要用于按标签选择数据。但是,这里使用的方式是向DataFrame添加新行。具体解释:-`len(df_sheet)`返回DataFrame的行数(整数)。-因此,`df_sheet.loc[len(df_sheet)]`试图访问索引为`len(df_sheet)`的行。注意,索引是从0开始的,所以现有行的索引范围是0到(len(df_sheet)-1)。因此,索引`len(df_sheet)`是一个新的索引(当前不存在)。-当给这个位置赋值时(如`df_sheet.loc[len(df_sheet)]=row_925`),pandas会添加一个新行,其索引为`len(df_sheet)`,数据为赋值的内容。所以,这实际上是一种在DataFrame末尾添加新行的方法。但是,需要注意的是,这种方法要求赋值的数据长度与DataFrame的列数匹配,否则会出错。在提供的代码中,添加了三行:1.第一行添加的是变量`row_925`(它很可能是之前提取的一行数据,即`df_sheet.iloc[0]`,表示第一行)2.第二行添加的是变量`row_1500`(很可能是最后一行`df_sheet.iloc[-1]`)3.第三行添加的是一组手动创建的值(列表形式),注意这个列表的长度应该与DataFrame的列数相同。为什么这样做?回顾整个代码片段:1.原始DataFrame被读取,并在第6列位置插入了一个新列'sum',并计算了'sum'列(为price列和vol列的乘积除以100)。2.然后提取了第一行(index=0)和最后一行(index=-1),并将原始DataFrame去掉首尾行(即中间部分)赋值给`df_sheet`。3.对中间部分按'sum'列降序排序,并取前8行(即最大的8行)。4.然后,在这个8行的DataFrame末尾,依次添加之前保存的首行(row_925)、尾行(row_1500)和一个自定义行(用于分隔或标识)。最终,将每个工作表处理后的DataFrame拼接起来。因此,添加首尾行的目的是:在排序并取前8行后,再把原数据的首行(可能是标题行?)和尾行(可能是汇总行?)加回去。但注意,在最初的代码中,首行和尾行已经被提取出来,并且原始数据去掉了首尾行。所以这里添加的`row_925`和`row_1500`实际上是原始数据的第一行和最后一行。但是,注意代码中之前已经提取了首尾行:row_925=df_sheet.iloc[0]row_1500=df_sheet.iloc[-1]df_sheet=df_sheet.iloc[1:-1]#去掉了首尾行所以,这里添加回去是为了在排序后的前8行后面附加原始的首尾行。另外,还加了一个自定义行,可能用于分隔不同日期的数据(因为每个工作表对应一个日期)。自定义行的内容:['⬆️','日期',f'{sheet_name}','⬆️','⬆️'],注意这里列数必须匹配。我们注意到原始代码中插入了一个新列'sum',所以原来的列数是多少?代码中插入在索引6的位置(即第7列),所以新列总数为原始列数+1。因此,这个自定义行需要与列数匹配。如果原始有5列,那么现在有6列(因为插入了一列),所以列表应该有6个元素。但实际上,我们不知道原始列数,所以这个列表的长度必须等于处理后的DataFrame的列数(包括新加的'sum'列)。最后,通过`pd.concat`将每个工作表处理后的DataFrame(包含前8行、原始首行、原始尾行和一个分隔行)合并成一个大DataFrame。总结:`.loc[len(df_sheet)]`在这里用于在DataFrame末尾添加新行。但是,需要注意的是,这种方法在索引重复时可能导致问题。如果DataFrame的索引不是0开始的连续整数(比如这里排序后索引可能是乱序),那么使用`len(df_sheet)`作为新索引可能不是连续的,但通常不会影响,因为添加后索引会自动变成`len(df_sheet)`(即当前行数作为新索引)。另外,pandas还提供了`df.append()`方法,但在新版本中已被弃用,推荐使用`pd.concat()`。不过,这里在末尾添加一行,使用`.loc`是一种常见方法。另一种更直观的方法是:df_sheet=pd.concat([df_sheet,pd.DataFrame([row_925],columns=df_sheet.columns)],ignore_index=True)但这样写较为繁琐。所以使用`.loc`添加行是简洁的。注意:在添加行时,如果添加的是Series,那么会按列名匹配。之前提取的行(row_925和row_1500)是Series,所以列名匹配没有问题。而添加列表时,是按位置顺序赋值的,因此要确保列表元素的顺序与列的顺序一致。现在,我们来回答用户的问题:pandasdf.loc[len(df_sheet)]用法及作用答:在pandas中,`df.loc[index]`用于按索引标签选择行。当`index`等于当前DataFrame的行数(即`len(df)`)时,表示一个尚未存在的行索引。因此,使用`df.loc[len(df)]=some_value`(其中`some_value`可以是列表、元组或与列数匹配的数组)会在DataFrame的末尾添加一行。注意事项:-此操作要求赋值的数据与DataFrame的列数匹配。-当索引不是默认整数索引(0到n-1)时,`len(df)`可能不等于索引值,此时应避免使用这种方法,而用`df.loc[max_index+1]`或其他方式。-如果索引中有缺失的整数,则可能会覆盖已有行(因为该位置有空缺)或插入到空缺处,所以通常只在默认的连续整数索引时使用这种方法。相关代码的功能解释:如用户提供的代码片段,首先对DataFrame按'sum'列降序排序并取前8行,然后将原始的首行(row_925)和尾行(row_1500)添加到这8行之后,最后再添加一个自定义的分隔行。这样每个工作表处理后的DataFrame就包含了最重要的8行,以及原始的首尾行(可能包含重要信息,如标题或汇总),还有一个分隔行用于区分不同工作表的数据(因为最终拼接成一个大的DataFrame)。另外,在分隔行中,有一个单元格的值是当前工作表名称(即日期),这样在最终合并的DataFrame中就能区分不同工作表的数据。根据引用[2]中提到,pandas的reindex可以调整行列顺序,但是这里的操作是添加行。引用[3]中提到了用concat来合并多个数据集,这里在循环中使用了concat来合并多个工作表的处理结果。引用文献:1.关于添加行的方法,虽然没有直接提到,但引用[2]中介绍了reindex和添加行,可能相关。2.引用[3]提到用concat合并DataFrame,这里在循环外使用concat合并所有工作表的数据。因此,在最终合并时,使用`pd.concat([all_data_new,df_sheet])`。注意:在循环中,每次处理一个工作表,然后将结果拼接到`all_data_new`中。初始时`all_data_new`可能是一个空的DataFrame,或者已经包含其他数据。因此,最后得到的数据是各个工作表处理结果的垂直拼接。如果我们要生成相关问题,可以参考:1.在pandas中,除了`.loc[]`,还有哪些方法可以添加行?2.为什么在添加行时使用`df.loc[len(df)]`可能存在风险?在什么情况下索引不是连续的整数?3.如何按列名匹配添加行,以避免列顺序不一致的问题?4.在pandas中,处理多个工作表数据时,如何避免内存不足?特别是当数据量很大时。5.如何优化这个代码片段,使其更高效(例如避免在循环中多次连接DataFrame)?</think> ### 详解 `.loc[len(df_sheet)]` 在 pandas 中的作用及代码功能 #### 1. `.loc[len(df_sheet)]` 的作用解析 在 pandas 中,`DataFrame.loc[]` 是用于基于标签的索引方法。`df_sheet.loc[len(df_sheet)]` 的具体含义和用途如下: - **索引逻辑**: - `len(df_sheet)` 获取 DataFrame 当前的行数(整数) - 对于索引为 $[0,1,2,...,n-1]$ 的 DataFrame($n$ 为行数) - `len(df_sheet)` 的值正好等于下一个可用的新索引位置 $n$ - **操作本质**: ```python df_sheet.loc[len(df_sheet)] = value ``` 等价于在 DataFrame **末尾添加一个新行**,新行的索引值为当前长度 $n$,并将指定值填充到该行。 - **示例**: 假设原始 DataFrame: | | A | B | |---|---|--| |**0**|1|4| |**1**|2|5| |**2**|3|6| 执行: ```python df.loc[3] = [7, 8] # 3 = len(df) ``` 结果: | | A | B | |---|---|--| |**0**|1|4| |**1**|2|5| |**2**|3|6| |**3**|7|8| #### 2. 相关代码功能详解 结合用户提供的代码片段: ```python df_sheet.sort_values(by='sum', inplace=True, ascending=False) # 按sum列降序排序 df_sheet = df_sheet.iloc[0:8] # 取前8行数据 df_sheet.loc[len(df_sheet)] = row_925 # 添加首行数据 df_sheet.loc[len(df_sheet)] = row_1500 # 添加尾行数据 df_sheet.loc[len(df_sheet)] = ['⬆️','日期',f'{sheet_name}','⬆️','⬆️'] # 添加分隔标记行 ``` 1. **数据处理流程**: - 按 `sum` 列降序排序后取前8行(Top 8) - 重新添加原始数据的首行 (`row_925`) 和尾行 (`row_1500`) - 最后添加一个分隔标记行(包含工作表名和箭头符号) 2. **设计意图**: - 保留关键数据(Top 8)的同时,恢复首尾行可能包含的摘要信息(如总计行) - 分隔标记行实现多工作表结果的视觉区分 - 最终通过 `pd.concat()` 将所有工作表处理结果合并 #### 3. 等效操作对比 | 方法 | 优点 | 缺点 | |------|------|------| | **`loc[len(df)]`** | 简洁直观 | 依赖连续整数索引 | | **`pd.concat()`** | 灵活性高 | 需创建新对象 | | **`df.append()`** | 语法简单 | Pandas 2.0+ 已弃用 | > 在需要兼容性的场景,推荐使用: > ```python > df_sheet = pd.concat([df_sheet, pd.DataFrame([new_row], columns=df.columns)]) > ``` #### 4. 关键注意事项 1. **索引要求**: - 必须为默认的连续整数索引 ($0,1,2,...$) - 若索引不连续(如执行过`drop`后),需先重置: ```python df_sheet.reset_index(drop=True, inplace=True) ``` 2. **数据对齐**: - 添加的值必须与列数一致 - 推荐使用字典格式保证列对齐: ```python df_sheet.loc[len(df_sheet)] = {'col1': val1, 'col2': val2} ``` 3. **性能优化**: - 循环中添加单行效率较低 - 批量添加时建议先收集所有新行,最后用 `pd.concat()` 一次性合并
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值