谈谈易建联的技术

昨晚为看篮球,下午的篮球都没去打(保存体力熬夜).但比赛完了,有点失落,希望是烟雾蛋,希望是热身而已.这种失落主要体现在对易11郎的.
  昨晚他,表现很一般,内线的蓝板拼得不积极,防守让对手突得太厉害,一点都没有太空易的影子了.在进攻上,技术太单一了,步伐不够灵活,也不够强悍.为此我希望就几个问题讲下我的个人经验,希望对他有用.
  一,以易的NBA摸板,他应该是加内特和波什的摸板.茶不多的身高,都能跳,有一定的投篮能力.但和俩人比,他的控球技术,真是太次了,投篮的出手也比较慢,缺少投篮瞬间的爆发力.但这些,我觉得最重要的还是控球技术,因为易绝对不可能是内线硬抗的选手,他适合,用投/传/突接合的前锋技术来提高自己得分能力和让对手胆寒.邓肯都是如此何况小易呢?看看NBA几个大前锋高手,都有拿得出手的得分绝招.邓肯的投篮和传球能力,加内特的后仰跳投/传球和突破能力,坦克的神投,波什的突破和投篮能力,所以在这方面小易还有很多路要走.希望他能按计划提高的是:
    1,手感,对球的感觉   2,投篮能力   3,控球能力   4,背身单打,背转身跳投和勾手 5,蓝下的梦幻脚步 6,突破能力,起步的爆发和突破中的转身过人等   而一直要进行的就是身体和力量练习.

  二,防守上.昨晚的易不知道是太激动了,还是什么,被对手一晃就跳,有这么高的个头,要好好利用,下面介绍对不同类型的人的内线防守.
  1,对比自己高,且力气大的对手.象这类型的对手,喜欢背对你,且贴住你,这样他的身高和力量才能发挥优势.为此,防守一定要顶和松接合,松是在判断他要发力的时候.这样对手就很容易失误.硬碰硬是很难的,这样的对手最好是一人顶,一人封或断下三路的球.
  2,对比自己矮,但力气大的对手.可以结合上面的作法,如果你弹跳好,爆发力强,我觉得可以用肘部先顶着对手,或保持半只手的距离,这样给自己一个起跳封盖的空间.
  3,对比自己高,但力气一般的对手,象这类对手,就一定要帖住放手,顶住他,让他不好出手,这样命中率自然就下降很多.
  4,对比自己矮,力气一般,但脚步好的对手,象这类的对手,你一定要保持半只手距离,把手扬起,不要轻易起跳,先用手遮住他的视线,卡好位置,保持好封盖的距离.
 
  另外对投手和突破好手,我觉得对球的压力很重要,不然让他突起来或投起来,你一点办法都没有.

  好就说到这边,觉得太空易还是块好玉.但他要提高的东西太多了,经验也是他很缺的.还有就是对每一场比赛都希望他能认真,只有认真比赛,才能提高和学习的多,同时也不容易受伤.

 
数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值