def build(args):
num_classes = 20 if args.dataset_file != 'coco' else 91
if args.dataset_file == "coco_panoptic":
num_classes = 250
device = torch.device(args.device)
backbone = build_backbone(args)
transformer = build_deforamble_transformer(args)
model = DeformableDETR(
backbone,
transformer,
num_classes=num_classes,
num_queries=args.num_queries,
num_feature_levels=args.num_feature_levels,
aux_loss=args.aux_loss,
with_box_refine=args.with_box_refine,
two_stage=args.two_stage,
)
if args.masks:
model = DETRsegm(model, freeze_detr=(args.frozen_weights is not None))
matcher = build_matcher(args)
weight_dict = {'loss_ce': args.cls_loss_coef, 'loss_bbox': args.bbox_loss_coef}
weight_dict['loss_giou'] = args.giou_loss_coef
if args.masks:
weight_dict["loss_mask"] = args.mask_loss_coef
weight_dict["loss_dice"] = args.dice_loss_coef
# TODO this is a hack
if args.aux_loss:
aux_weight_dict = {}
for i in range(args.dec_layers - 1):
aux_weight_dict.update({k + f'_{i}': v for k, v in weight_dict.items()})
aux_weight_dict.update({k + f'_enc': v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ['labels', 'boxes', 'cardinality']
if args.masks:
losses += ["masks"]
# num_classes, matcher, weight_dict, losses, focal_alpha=0.25
criterion = SetCriterion(num_classes, matcher, weight_dict, losses, focal_alpha=args.focal_alpha)
criterion.to(device)
postprocessors = {'bbox': PostProcess()}
if args.masks:
postprocessors['segm'] = PostProcessSegm()
if args.dataset_file == "coco_panoptic":
is_thing_map = {i: i <= 90 for i in range(201)}
postprocessors["panoptic"] = PostProcessPanoptic(is_thing_map, threshold=0.85)
return model, criterion, postprocessors
这段Python代码定义了一个名为build的函数,它主要用于根据给定的参数(args)构建一个目标检测或分割模型(特别是基于Deformable DETR的模型),以及相应的损失计算器和后处理器。这个函数通常在训练或评估深度学习模型时使用,特别是在处理图像目标检测或分割任务时。下面是对代码主要部分的详细解释:
-
设置类别数:
- 首先,根据
args.dataset_file的值设置num_classes,即模型的输出类别数。对于不同的数据集,类别数可能不同。例如,如果是COCO数据集,则类别数为91;如果是其他数据集,则默认为20。如果数据集是coco_panoptic,则类别数设置为250。
- 首先,根据
-
设置设备:
- 使用
torch.device(args.device)设置模型运行的设备(CPU或GPU)。
- 使用
-
构建模型组件:
- 使用
build_backbone(args)构建模型的骨干网络(backbone)。 - 使用
build_deforamble_transformer(args)构建可变形Transformer(deformable transformer),这是Deformable DETR模型的核心组件之一。 - 接着,使用这些组件以及从
args中获取的其他参数(如num_queries、num_feature_levels等)来实例化DeformableDETR模型。
- 使用
-
可选的分割功能:
- 如果
args.masks为真,则将模型包装为DETRsegm,以支持目标分割。同时,根据是否冻结DETR部分的权重来调整模型。
- 如果
-
构建匹配器和损失权重字典:
- 使用
build_matcher(args)构建匹配器(matcher),它用于在训练过程中将预测和真实标签进行匹配。 - 创建一个包含不同损失项权重的字典
weight_dict。这些权重用于在训练过程中平衡不同损失项的重要性。 - 如果启用了辅助损失(
aux_loss),则为每个解码层(除了最后一层)和编码器层添加相应的损失项权重。
- 使用
-
设置损失函数:
- 使用
SetCriterion类实例化损失函数,它根据num_classes、matcher、weight_dict和其他参数(如focal_alpha)来计算模型的损失。
- 使用
-
设置后处理器:
- 初始化一个后处理器字典
postprocessors,它包含用于处理模型输出的函数。默认情况下,只包含边界框后处理器PostProcess()。 - 如果启用了分割功能(
args.masks为真),则添加分割后处理器PostProcessSegm()。对于coco_panoptic数据集,还添加了一个用于全景分割的后处理器PostProcessPanoptic。
- 初始化一个后处理器字典
-
返回模型、损失函数和后处理器:
- 最后,函数返回构建好的模型、损失函数和后处理器字典,这些组件将用于后续的训练或评估过程。
总之,这段代码是一个高度可配置的框架,用于构建和准备基于Deformable DETR的目标检测或分割模型,以适应不同的数据集和训练需求。
1641

被折叠的 条评论
为什么被折叠?



