大树荫:决策树的算法原理

导读

在之前写的一篇文章:小树苗:决策树是什么?中说明了决策树的定义与目的,接下来我们就要开始了解决策树背后的数学意义了。

信息熵和信息量化

“等下,信息量有点大……”

当我们面对有点难以接受和一时间反应不过来的信息时,我们经常说这句话(这句话应该还没过气吧!)。

要是你家的猫娘学习机器学习,一定是一脸不明所以地顶着屏幕上奇奇怪怪的数学公式;而如果是你和你的室友,那么说不定就会夸夸其谈。为什么会有这样的差别?因为你的室友和你的猫娘所接收的信息量是不相同的

信息量越是不足,那么这件事情就越不确定,就像猫娘完全不知道机器学习是个啥玩意儿,要把这件事情搞清楚所需要的信息就越多;反之,信息量越足,各种事情事物也看得愈发明朗,你的室友甚至都能说出kmeans、决策树等等机器学习算法,要把这件事情搞清楚所需要的信息就越少

那么,信息量怎么衡量?单纯的通过人的接受能力和反应时间实在是太主观了,也太武断了。更何况,如果不是使用数学方法衡量的话,现在也很难直接使用机器学习的方法帮助我们充分挖掘信息中的潜在价值

1948年,像农在他著名的《通信的数学原理》中提出了信息熵的概念,从而解决了信息量化的问题。

——摘自《scikit-learn机器学习常用算法原理与编程实战》 [著]黄永昌

如果你的脑海里还残存了一点点高中化学的知识,你应该知道,熵是一种不稳定状态的度量方式熵越大空间内越混乱那么信息熵也应当类似。如果说对这件事完全弄明白了,那么就是一种稳定状态;而半懂不懂则是一种不稳定的状态。信息熵描述的就是对这个信息来说从不稳定(也就是没有完全理解)到稳定(也就是彻底理解)之间的差距。

信息熵的量化公式就是:

H ( X ) = − ∑ x ∈ X P ( x ) log ⁡ 2 P ( x ) H(X) = -\sum_{x\in X}P(x)\log_2P(x) H(X)=xXP(x)log2P(x)

其中, X X X指所研究的事件集合, x x x指事件集合中所出现的其中一个事件, P ( x ) P(x) P(x)则是事件 x x x所出现的概率。

如果在我面前有一个宝箱,出货率如下表所示:

物品概率
一次性湿纸巾一包 25 % 25\% 25%
一次性纸手帕一包 25 % 25\% 25%
一次性塑料碗一个 25 % 25\% 25%
一次性木筷子一双 25 % 25\% 25%

既然每一种一次性用品抽中的概率都是 25 % 25\% 25%,那么任意抽一次,也就只有这些结果:

  • 一次性湿纸巾一包
  • 一次性纸手帕一包
  • 一次性塑料碗一个
  • 一次性木筷子一双

所以,信息熵也就是:

H ( 抽 奖 结 果 ) = − ( 1 4 log ⁡ 2 1 4 ) ∗ 4 = 2 ( b i t ) H(抽奖结果)=-(\frac{1}{4}\log_2\frac{1}{4})*4=2(bit) H()=(41log241)4=2(bit)

没错,结果的单位实际上是比特。要确认我这次抽到的是4种一次性用具的哪一种,只需要两个比特就能解决,也就是一个字节的 1 4 \frac{1}{4} 41就可以了,大概就是0000000000000011,或者是0x000x03

很神奇不是么?

信息增益

什么是信息增益?就是信息量的差值信息增益只是一个值没有正负的矢量意义。还记得之前提到的权重么?这个权重就是信息增益。如果增益非常大,那么权重就会非常大。在决策树彻底长成古老的巨树之后,信息增益就会帮我们从根出发,一直上升到对应的叶子。

好的,说明之前,让我们先换个场景:

现在你刚拿到你的小蛋糕店,也装修完了,现在剩下一地的箱子,共 100 100 100只。 8 8 8个装了垃圾, 16 16 16个是日用品, 16 16 16个是对蛋糕店来说有用的, 4 4 4个是极其重要的,还有 8 8 8个被你的猫娘们占用了,剩下 48 48 48个是空箱子。现在不再是抽奖了,而是你要逐一分类。当然,这个时候你完全可以看看里面是什么。

渐渐地,在分类的过程中,你也找到了诀窍:

  • 空箱子非常轻,踢一脚就会滚两圈;
  • 装了垃圾的箱子会看起来脏一点,蒙着一层灰;
  • 装了日用品的箱子中,有的会伸出来衣架,有的会散发出沐浴露的香味等等;
  • 装了蛋糕店相关的箱子和极其重要的箱子会有很明显的警告标志;
  • 被猫娘们霸占的箱子则会伸出来一只猫尾巴或者猫爪爪

看起来很有规律了嘛。那么就开始分类吧!

信息增益的计算步骤

首先,我们先分析一下,对于这 100 100 100个箱子里面,随便选一个打开看的话,就会有这些事件:

X = { 空 箱 子 ⋯ x 1 垃 圾 箱 ⋯ x 2 日 用 品 箱 ⋯ x 3 蛋 糕 箱 ⋯ x 4 重 要 箱 子 ⋯ x 5 猫 娘 箱 ⋯ x 6 } X= \left\{ \begin{matrix} 空箱子&\cdots&x_1\\垃圾箱&\cdots&x_2\\日用品箱&\cdots&x_3\\蛋糕箱&\cdots&x_4\\重要箱子&\cdots&x_5\\猫娘箱&\cdots&x_6 \end{matrix} \right\} X=x1x2x3x4x5x6

概率分布就是这样:

X X X x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
P ( x ) P(x) P(x) 0.48 0.48 0.48 0.08 0.08 0.08 0.16 0.16 0.16 0.16 0.16 0.16 0.04 0.04 0.04 0.08 0.08 0.08

好的,接下来就是信息熵了。

一开始就是一片混沌的6种箱子混在一起, H ( X ) = − ∑ x ∈ X P ( x ) ∗ log ⁡ x P ( x ) = 2.1231 H(X)=-\sum_{x\in X}P(x)*\log_xP(x)=2.1231 H(X)=xXP(x)logxP(x)=2.1231

猫枝叶、部分日用品枝叶

为了先照顾你心目中最重要的几只小猫娘,你决定先看看有没有猫。于是,你看看箱子里伸出来了啥,然后发现了 4 4 4个伸出来猫爪爪的箱子和 4 4 4个伸出来猫尾巴的箱子,还发现了 8 8 8个伸出来衣架的日用品箱子。于是, H ( x 6 ) = − P ( x 6 ) ∗ log ⁡ 2 P ( x 6 ) = 3.64 ∗ 0.08 = 0.2912 H(x_6)=-P(x_6)*\log_2P(x_6)=3.64*0.08=0.2912 H(x6)=P(x6)log2P(x6)=3.640.08=0.2912,这就是找到猫娘所需要的信息增益。对于突然发现的日用品箱 ( x 7 ) (x_7) (x7)我们也计算一下, H ( x 7 ) = − P ( x 7 ) ∗ log ⁡ 2 P ( x 7 ) = 0.2915 H(x_7)=-P(x_7)*\log_2P(x_7)=0.2915 H(x7)=P(x7)log2P(x7)=0.2915

第一次分枝

那么,然后剩下来空箱子垃圾箱蛋糕箱和剩下的日用品箱,记为 Y Y Y H ( Y ) = − ∑ x ∈ Y P ( x ) ∗ log ⁡ 2 P ( x ) = 1.5143 H(Y)=-\sum_{x\in Y}P(x)*\log_2P(x)=1.5143 H(Y)=xYP(x)log2P(x)=1.5143

然后看看有没有警告标记。找到警告标记之后,会找到蛋糕箱对自己非常重要的箱子,记为 Z Z Z H ( Z ) = − ∑ x ∈ Z P ( x ) ∗ log ⁡ 2 P ( x ) = 0.6088 H(Z)=-\sum_{x\in Z}P(x)*\log_2P(x)=0.6088 H(Z)=xZP(x)log2P(x)=0.6088

而剩下一些空箱子垃圾箱和剩下的日用品箱,记为 A A A H ( x ) = − ∑ x ∈ A P ( x ) ∗ log ⁡ 2 P ( x ) = 1.0913 H(x)=-\sum_{x\in A}P(x)*\log_2P(x)=1.0913 H(x)=xAP(x)log2P(x)=1.0913

重要箱子枝叶、蛋糕箱枝叶和空箱子枝叶

找出了蛋糕箱和重要箱子之后,我们再打开看看箱子里是个啥。打开之后如果发现了相册和笔记本,那就是重要箱子 H ( x 5 ) = − P ( x 5 ) ∗ log ⁡ 2 P ( x 5 ) = 0.1858 H(x_5)=-P(x_5)*\log_2P(x_5)=0.1858 H(x5)=P(x5)log2P(x5)=0.1858

同时,我们也找到了蛋糕箱 H ( x 4 ) = − P ( x 4 ) ∗ log ⁡ 2 P ( x 4 ) = 0.423 H(x_4)=-P(x_4)*\log_2P(x_4)=0.423 H(x4)=P(x4)log2P(x4)=0.423

我们刚刚通过有没有警示标志找出了空箱子垃圾箱和剩下的日用品箱,我们接下来就随便踢一脚试试,如果瞬间就飞出去翻滚两圈,那就是空箱子。于是, H ( x 1 ) = − P ( x 1 ) ∗ log ⁡ 2 P ( x 1 ) = 0.5803 H(x_1)=-P(x_1)*\log_2P(x_1)=0.5803 H(x1)=P(x1)log2P(x1)=0.5803

第二次分枝

那么,踢不动的就是垃圾箱和日用品箱了,记为 B B B H ( B ) = − ∑ x ∈ B P ( x ) ∗ log ⁡ 2 P ( x ) = 0.583 H(B)=-\sum_{x\in B}P(x)*\log_2P(x)=0.583 H(B)=xBP(x)log2P(x)=0.583

垃圾箱枝叶和剩余日用品箱枝叶

最后,我们在最后剩下的箱子里间闻一闻,就能够通过有没有沐浴露的清香来分辨最后的两种箱子。没有香味那就应该是充满了灰尘味道的垃圾箱了。于是, H ( x 2 ) = − P ( x 2 ) ∗ log ⁡ x P ( x 2 ) = 2.915 H(x_2)=-P(x_2)*\log_xP(x_2)=2.915 H(x2)=P(x2)logxP(x2)=2.915。最后就是剩下的 8 8 8日用品箱了,也就是 H ( x 3 ) = − P ( x 3 ) ∗ log ⁡ 2 P ( x 3 ) = 2.915 H(x_3)=-P(x_3)*\log_2P(x_3)=2.915 H(x3)=P(x3)log2P(x3)=2.915

总结

这下整颗树就明了了呢。画张图总结一下吧:

决策流程图

看起来非常不错啊!

题外话

为什么概率越大越可靠?

我们一直在计算熵值,也就是这个函数 H ( x ) = − P ( x ) ∗ log ⁡ 2 P ( x ) H(x)=-P(x)*\log_2P(x) H(x)=P(x)log2P(x)。如果我们吧这个函数画出来:

使用了这样几行代码:

import matplotlib.pyplot as pyplot
import numpy as np
import math

if __name__ == '__main__':
	# 准备x轴,并不做变换
    x = np.linspace(0.01, 1, 100)
    # 准备y轴,做一些变换以生成新的序列
    y = x
	# 使用map迭代变换,最后将得出来的迭代器强转为序列
    y = list(map(lambda y: -y * math.log(y) / math.log(2), y))
	# 贴一些图表文字
    pyplot.title('-P(x)*logP(x)')
    pyplot.xlabel('range of X:0.01->1')
    pyplot.ylabel('value of Y')
	# 画图
    pyplot.plot(x, y)
    pyplot.show()
    pass

然后就有了下图的结果。

决策流程图

可以看到,随着概率从 0 0 0 1 1 1的变化过程中,熵值不断变大然后到达峰值大约 0.5307290449339367 0.5307290449339367 0.5307290449339367左右之后开始减小逐渐到 0 0 0

这也正好说明了:若是对于这件事发生的概率越大对这件事越确定熵值越低也就越稳定越可靠

为什么代码中的 x x x不是从0开始?

细心的你会发现,为什么 P ( x ) P(x) P(x)不从 0 0 0开始?因为 log ⁡ 0 = − ∞ \log0=-\infin log0=,于是 H ( 0 ) = − P ( 0 ) ∗ log ⁡ 2 P ( 0 ) H(0)=-P(0)*\log_2P(0) H(0)=P(0)log2P(0)嘛。

但是你肯定还会坚持,然后开始论证:

lim ⁡ x → 0 + H ( x ) = − lim ⁡ x → 0 + P ( x ) ∗ log ⁡ 2 P ( x ) 令 t = 1 P ( x ) 即 t → + ∞ , 将 t 代 入 式 中 得 = − l i m t → + ∞ log ⁡ 2 1 t t 使 用 洛 必 达 法 则 得 = − l i m t → + ∞ − 1 t 2 ∗ 1 1 t ln ⁡ 2 1 = lim ⁡ t → + ∞ 1 t ln ⁡ 2 = 0 \begin{matrix} \lim_{x\rightarrow0_+}H(x)&=&-\lim_{x\rightarrow0_+}P(x)*\log_2P(x)\\ \\令t=\frac{1}{P(x)}\\ \\即t\rightarrow+\infin,&&将t代入式中得\\ \\&=&-lim_{t\rightarrow+\infin}\frac{\log_2\frac{1}{t}}{t}\\ \\使用洛必达法则得\\ &=&-lim_{t\rightarrow+\infin}\frac{-\frac{1}{t^2}*\frac{1}{\frac{1}{t}\ln2}}{1}\\ \\&=&\lim_{t\rightarrow+\infin}\frac{1}{t\ln2}=0 \end{matrix} limx0+H(x)t=P(x)1t+使====limx0+P(x)log2P(x)tlimt+tlog2t1limt+1t21t1ln21limt+tln21=0

好嘛干得漂亮

niupi

那这我不得不佩服你的数学功底。但是说了这么多有什么用嘛,计算机到了 log ⁡ ( 0 ) \log(0) log(0)直接抛异常了哪管你连续不连续的

为什么要分类?

高中化学告诉我们,只要一个独立的系统放在这里熵值只会变大只是不同的系统有着时间快慢的差别罢了

也就是说,要是就把本篇箱子分类这个案例中的一堆箱子放在这里,箱子只会越来越乱。再举个现实的例子吧,对于码农,一段时间只往电脑里塞文件而不分类,电脑里面的文件也只会越来越乱

为什么要分类

一方面,普通地说,那就是让自己更快地找到自己想要的东西

另一方面,学术一点的表达就是:让熵值减少从而该事件更稳定

如果是要再表述得更哲学一点,那就是像书中说的一样:

  • 希望笔者在暮年之时,回首往事,能自信地说,我给这个世界带来的信息增益是正数,且已经尽力做到最大了。

——摘自《scikit-learn机器学习常用算法原理及编程实战》 [著]黄永昌

是不是有点能理解了呢?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ordinary_brony

代码滞销,救救码农

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值