朴素贝叶斯

概述

朴素贝叶斯法基于特征条件独立假设贝叶斯定理。首先,基于特征条件独立假设,学习输入与输出的联合概率分布(生成模型);然后,根据学习到的概率模型,对给定输入利用贝叶斯定理求出后验概率最大的输出,作为该输入的类别。

模型

有如下假设:

  • 输入空间 X ⊆ R n \mathcal{X}\subseteq\mathbf{R}^n XRn n n n 维向量的集合,输出空间 Y = { c 1 , c 2 , ⋯   , c K } \mathcal{Y}=\{c_1,c_2,\cdots,c_K\} Y={c1,c2,,cK} 为类标记的集合。
  • 输入为特征向量 x ∈ X \bm{x}\in\mathcal{X} xX,输出为类标记 y ∈ Y y\in\mathcal{Y} yY
  • X \bm{X} X是定义在输入空间 X \mathcal{X} X 上的随机向量, Y Y Y 是定义在输出空间 Y \mathcal{Y} Y 上的随机变量, P ( X , Y ) P(\bm{X},Y) P(X,Y) X \bm{X} X Y Y Y 的联合概率分布。
  • 训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\{(\bm{x}_1,y_1),(\bm{x}_2,y_2),\cdots,(\bm{x}_N,y_N)\} T={(x1,y1),(x2,y2),,(xN,yN)} P ( X , Y ) P(\bm{X},Y) P(X,Y) 独立同分布产生。

朴素贝叶斯法通过训练数据集 T T T 学习以下两个分布

  • 先验概率分布:
    P ( Y = c k ) P(Y=c_k) P(Y=ck)
  • 条件概率分布:
    P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) P(\bm{X}=\bm{x} | Y=c_k) = P(X^{(1)}=x^{(1)},\cdots,X^{(n)}=x^{(n)}|Y=c_k) P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)

其中, k = 1 , 2 , ⋯   , K k=1,2,\cdots,K k=1,2,,K。根据上述两个分布即可确定联合概率分布 P ( X , Y ) P(\bm{X},Y) P(X,Y),故朴素贝叶斯法属于生成方法。

输出 Y Y Y 的先验概率可由样本频率直接得到。条件概率常通过参数估计的方式获得,然而,上述条件概率分布包含指数级数量的参数,估计非常困难。朴素贝叶斯法对条件概率分布作了条件独立性假设,即在类确定的条件下,用于分类的特征是独立的:
P ( X = x ∣ Y = c k ) = P ( X ( 1 ) = x ( 1 ) , ⋯   , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ i = 1 n P ( X ( i ) = x ( i ) ∣ Y = c k ) \begin{aligned} P(\bm{X}=\bm{x}|Y=c_k) &= P(X^{(1)}=x^{(1)},\cdots,X^{(n)}=x^{(n)}|Y=c_k) \\ &=\prod_{i=1}^{n} P(X^{(i)}=x^{(i)} | Y=c_k) \end{aligned} P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)=i=1nP(X(i)=x(i)Y=ck)

条件独立性假设可简化学习算法,但也造成了分类准确率的降低。

预测时采用后验概率最大化准则:对于任意输入 x \bm{x} x,通过学习到的先验概率和条件概率计算后延概率 P ( Y = c k ∣ X = x ) P(Y=c_k|\bm{X}=\bm{x}) P(Y=ckX=x),将后验概率最大的类作为输出。后验概率的计算采用贝叶斯定理:
P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ i = 1 K P ( X = x ∣ Y = c i ) P ( Y = c i ) P(Y=c_k|\bm{X}=\bm{x}) = \frac{P(\bm{X}=\bm{x}|Y=c_k)P(Y=c_k)}{\sum_{i=1}^{K}P(\bm{X}=\bm{x}|Y=c_i)P(Y=c_i)} P(Y=ckX=x)=i=1KP(X=xY=ci)P(Y=ci)P(X=xY=ck)P(Y=ck)
由条件独立性假设:
P ( Y = c k ∣ X = x ) = P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ i = 1 K P ( Y = c i ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c i ) P(Y=c_k|\bm{X}=\bm{x}) = \frac{P(Y=c_k)\prod_{j=1}^{n} P(X^{(j)}=x^{(j)} | Y=c_k)}{\sum_{i=1}^{K}P(Y=c_i)\prod_{j=1}^{n} P(X^{(j)}=x^{(j)} | Y=c_i)} P(Y=ckX=x)=i=1KP(Y=ci)j=1nP(X(j)=x(j)Y=ci)P(Y=ck)j=1nP(X(j)=x(j)Y=ck)
其中, k = 1 , 2 , ⋯   , K k=1,2,\cdots,K k=1,2,,K。朴素贝叶斯模型可表示为:
y = f ( x ) = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) ∑ i = 1 K P ( Y = c i ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c i ) y=f(\bm{x})=\arg \max_{c_k} \frac{P(Y=c_k)\prod_{j=1}^{n} P(X^{(j)}=x^{(j)} | Y=c_k)}{\sum_{i=1}^{K}P(Y=c_i)\prod_{j=1}^{n} P(X^{(j)}=x^{(j)} | Y=c_i)} y=f(x)=argckmaxi=1KP(Y=ci)j=1nP(X(j)=x(j)Y=ci)P(Y=ck)j=1nP(X(j)=x(j)Y=ck)
上式的分母对所有 c k c_k ck 是相同的,因此,模型亦可表示为:
y = f ( x ) = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=f(\bm{x})=\arg \max_{c_k} P(Y=c_k)\prod_{j=1}^{n} P(X^{(j)}=x^{(j)} | Y=c_k) y=f(x)=argckmaxP(Y=ck)j=1nP(X(j)=x(j)Y=ck)

后验概率最大化等价于期望风险最小化。

概率估计

极大似然估计

朴素贝叶斯法需要根据训练样本估计先验概率 P ( Y = c k ) P(Y=c_k) P(Y=ck) 和条件概率 P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X^{(j)}=x^{(j)}|Y=c_k) P(X(j)=x(j)Y=ck)。通常采用极大似然估计。

先验概率 P ( Y = c k ) P(Y=c_k) P(Y=ck) 的极大似然估计为
P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N , k = 1 , 2 , ⋯   , K P(Y=c_k) = \frac{\sum_{i=1}^{N} I(y_i=c_k)}{N},\quad k=1,2,\cdots,K P(Y=ck)=Ni=1NI(yi=ck),k=1,2,,K
假设第 j j j 个特征 x ( j ) x^{(j)} x(j) 的可能取值有 S j S_j Sj 个,取值集合为 { a j 1 , a j 2 , ⋯   , a j S j } \{a_{j1},a_{j2},\cdots,a_{jS_j}\} {aj1,aj2,,ajSj},则条件概率 P ( X ( j ) = a j l ∣ Y = c k ) P(X^{(j)}=a_{jl}|Y=c_k) P(X(j)=ajlY=ck) 的极大似然估计为
P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( l ) = a j l , y i = c k ) ∑ i = 1 N I ( y i = c k ) P(X^{(j)}=a_{jl}|Y=c_k) = \frac{\sum_{i=1}^{N} I(x_{i}^{(l)}=a_{jl},y_i=c_k)}{\sum_{i=1}^{N}I(y_i=c_k)} P(X(j)=ajlY=ck)=i=1NI(yi=ck)i=1NI(xi(l)=ajl,yi=ck)
其中, j ∈ { 1 , 2 , ⋯   , n } j\in\{1,2,\cdots,n\} j{1,2,,n} l ∈ { 1 , 2 , ⋯   , S j } l\in\{1,2,\cdots,S_j\} l{1,2,,Sj} k ∈ { 1 , 2 , ⋯   , K } k\in\{1,2,\cdots,K\} k{1,2,,K} x i ( j ) x_i^{(j)} xi(j) 为第 i i i 个样本的第 j j j 个特征, a j l a_{jl} ajl 为第 j j j 个特征可取的第 l l l 个值。

贝叶斯估计

对于待测实例 x = ( x ( 1 ) , x ( 2 ) , ⋯   , x ( n ) ) T \bm{x}=(x^{(1)},x^{(2)},\cdots,x^{(n)})^{\rm T} x=(x(1),x(2),,x(n))T,若存在某个特征值 x ( j ) = a x^{(j)}=a x(j)=a,使得
∑ i = 1 N I ( x i ( j ) = a , y = c k ) = 0 \sum_{i=1}^{N}I(x_i^{(j)}=a,y=c_k)=0 i=1NI(xi(j)=a,y=ck)=0
即训练样本集中没有第 j j j 个特征为 a a a 且类别为 c k c_k ck 的样本,则有
P ( X ( j ) = a ∣ Y = c k ) = 0 P(X^{(j)}=a|Y=c_k) = 0 P(X(j)=aY=ck)=0
于是,
∏ j = 1 n P ( X ( j ) = a ∣ Y = c k ) = 0 \prod_{j=1}^{n} P(X^{(j)}=a|Y=c_k) = 0 j=1nP(X(j)=aY=ck)=0
假设对所有 c k ∈ { c 1 , c 2 , ⋯   , c K } c_k\in\{c_1,c_2,\cdots,c_K\} ck{c1,c2,,cK},上述概率均为0,则朴素贝叶斯模型失效,无法获得概率最大的类别;即使只有部分类别存在上述情况,也会使分类结果产生偏差。

要解决上述问题,条件概率的计算可采用贝叶斯估计:
P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ∑ i = 1 N I ( y i = c k ) + S j λ P_\lambda(X^{(j)}=a_{jl}|Y=c_k) = \frac{\sum_{i=1}^{N}I(x_i^{(j)}=a_{jl},y_i=c_k) + \lambda}{\sum_{i=1}^{N}I(y_i=c_k) + S_j\lambda} Pλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλi=1NI(xi(j)=ajl,yi=ck)+λ
其中, λ ≥ 0 \lambda\geq 0 λ0。当 λ = 0 \lambda=0 λ=0 时,即为极大似然估计;当 λ = 1 \lambda=1 λ=1 时,称为拉普拉斯平滑(Laplace Smoothing)。由于 S j S_j Sj 为第 j j j 个特征可取值的数目,所以,
∑ l = 1 S j P λ ( X ( j ) = a j l ∣ Y = c k ) = ∑ l = 1 S j ( ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + λ ) ∑ i = 1 N I ( y i = c k ) + S j λ = ∑ l = 1 S j ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) + S j λ ∑ i = 1 N I ( y i = c k ) + S j λ = ∑ i = 1 N ( ∑ l = 1 S j I ( x i ( j ) = a j l , y i = c k ) ) + S j λ ∑ i = 1 N I ( y i = c k ) + S j λ = ∑ i = 1 N I ( y i = c k ) + S j λ ∑ i = 1 N I ( y i = c k ) + S j λ = 1 \begin{aligned} \sum_{l=1}^{S_j}P_\lambda(X^{(j)}=a_{jl}|Y=c_k) &= \frac{\sum_{l=1}^{S_j} \left(\sum_{i=1}^{N}I(x_i^{(j)}=a_{jl},y_i=c_k) + \lambda\right)}{\sum_{i=1}^{N}I(y_i=c_k) + S_j\lambda} \\ &= \frac{\sum_{l=1}^{S_j} \sum_{i=1}^{N}I(x_i^{(j)}=a_{jl},y_i=c_k) + S_j\lambda}{\sum_{i=1}^{N}I(y_i=c_k) + S_j\lambda} \\ &= \frac{\sum_{i=1}^{N}\left(\sum_{l=1}^{S_j} I(x_i^{(j)}=a_{jl},y_i=c_k)\right) + S_j\lambda}{\sum_{i=1}^{N}I(y_i=c_k) + S_j\lambda} \\ &= \frac{\sum_{i=1}^{N}I(y_i=c_k) + S_j\lambda}{\sum_{i=1}^{N}I(y_i=c_k) + S_j\lambda} \\ &= 1 \end{aligned} l=1SjPλ(X(j)=ajlY=ck)=i=1NI(yi=ck)+Sjλl=1Sj(i=1NI(xi(j)=ajl,yi=ck)+λ)=i=1NI(yi=ck)+Sjλl=1Sji=1NI(xi(j)=ajl,yi=ck)+Sjλ=i=1NI(yi=ck)+Sjλi=1N(l=1SjI(xi(j)=ajl,yi=ck))+Sjλ=i=1NI(yi=ck)+Sjλi=1NI(yi=ck)+Sjλ=1
即在类别 c k c_k ck 下,第 j j j 个特征取到所有值的概率为1。又因为
P λ ( X ( j ) = a j l ∣ Y = c k ) ≥ 0 P_\lambda(X^{(j)}=a_{jl}|Y=c_k) \geq 0 Pλ(X(j)=ajlY=ck)0
所以 P λ ( X ( j ) = a j l ∣ Y = c k ) P_\lambda(X^{(j)}=a_{jl}|Y=c_k) Pλ(X(j)=ajlY=ck) 是一种概率分布。

同理,先验概率的计算也可采用贝叶斯估计:
P λ ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) + λ N + K λ P_\lambda(Y=c_k) = \frac{\sum_{i=1}^{N}I(y_i=c_k) + \lambda}{N+K\lambda} Pλ(Y=ck)=N+Kλi=1NI(yi=ck)+λ
此时有
P λ ( Y = c k ) ≥ 0 P_\lambda(Y=c_k) \geq 0 Pλ(Y=ck)0

∑ k = 1 K P λ ( Y = c k ) = ∑ k = 1 K ( ∑ i = 1 N I ( y i = c k ) + λ ) N + K λ = ∑ k = 1 K ∑ i = 1 N I ( y i = c k ) + K λ N + K λ = N + K λ N + K λ = 1 \begin{aligned} \sum_{k=1}^{K}P_\lambda(Y=c_k) &= \frac{\sum_{k=1}^{K}\left(\sum_{i=1}^{N}I(y_i=c_k) + \lambda\right)}{N+K\lambda} \\ &= \frac{\sum_{k=1}^{K}\sum_{i=1}^{N}I(y_i=c_k) + K\lambda}{N+K\lambda} \\ &= \frac{N + K\lambda}{N+K\lambda} \\ &= 1 \end{aligned} k=1KPλ(Y=ck)=N+Kλk=1K(i=1NI(yi=ck)+λ)=N+Kλk=1Ki=1NI(yi=ck)+Kλ=N+KλN+Kλ=1


总结:朴素贝叶斯算法

输入:

  • 训练数据集
    T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\{(\bm{x}_1,y_1),(\bm{x}_2,y_2),\cdots,(\bm{x}_N,y_N)\} T={(x1,y1),(x2,y2),,(xN,yN)}
    其中
    x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i ( n ) ) T \bm{x}_i=\left(x_i^{(1)},x_i^{(2)},\cdots,x_i^{(n)}\right)^{\rm T} xi=(xi(1),xi(2),,xi(n))T
    x i ( j ) x_i^{(j)} xi(j) 是第 i i i 个样本的第 j j j 个特征,有
    x i ( j ) ∈ { a j 1 , a j 2 , ⋯   , a j S j } x_i^{(j)}\in\{a_{j1},a_{j2},\cdots,a_{jS_j}\} xi(j){aj1,aj2,,ajSj}
    a j l a_{jl} ajl 是第 j j j 个特征可取的第 l l l 个值,有 j ∈ { 1 , 2 , ⋯   , n } j\in\{1,2,\cdots,n\} j{1,2,,n} l ∈ { 1 , 2 , ⋯   , S j } l\in\{1,2,\cdots,S_j\} l{1,2,,Sj}
    同时, y k ∈ { c 1 , c 2 , ⋯   , c K } y_k\in\{c_1,c_2,\cdots,c_K\} yk{c1,c2,,cK}
  • 输入实例 x \bm{x} x

输出:

  • 实例 x \bm{x} x 的分类。

算法:

  1. 对所有 c k ∈ { c 1 , c 2 , ⋯   , c K } c_k\in\{c_1,c_2,\cdots,c_K\} ck{c1,c2,,cK},计算先验概率 P ( Y = c k ) P(Y=c_k) P(Y=ck) 与条件概率 P ( X j = a j l ∣ Y = c k ) P(X^{j}=a_{jl}|Y=c_k) P(Xj=ajlY=ck)
    P ( Y = c k ) = ∑ i = 1 N I ( y i = c k ) N P(Y=c_k)=\frac{\sum_{i=1}^{N}I(y_i=c_k)}{N} P(Y=ck)=Ni=1NI(yi=ck)
    P ( X ( j ) = a j l ∣ Y = c k ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c k ) ∑ i = 1 N I ( y i = c k ) P(X^{(j)}=a_{jl}|Y=c_k) = \frac{\sum_{i=1}^{N}I(x_i^{(j)}=a_{jl},y_i=c_k)}{\sum_{i=1}^{N}I(y_i=c_k)} P(X(j)=ajlY=ck)=i=1NI(yi=ck)i=1NI(xi(j)=ajl,yi=ck)
  2. 对所有 c k ∈ { c 1 , c 2 , ⋯   , c K } c_k\in\{c_1,c_2,\cdots,c_K\} ck{c1,c2,,cK},计算实例 x = ( x ( 1 ) , x ( 2 ) , ⋯   , x ( n ) ) T \bm{x}=\left(x^{(1)},x^{(2)},\cdots,x^{(n)}\right)^{\rm T} x=(x(1),x(2),,x(n))T 在各类别条件下取相应特征值的条件概率,进而得到模型值:
    P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P(Y=c_k)\prod_{j=1}^{n}P(X_{(j)}=x^{(j)}|Y=c_k) P(Y=ck)j=1nP(X(j)=x(j)Y=ck)
  3. 确定实例 x \bm{x} x 的类别:
    y = arg ⁡ max ⁡ c k P ( Y = c k ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) y=\arg\max_{c_k} P(Y=c_k)\prod_{j=1}^{n}P(X_{(j)}=x^{(j)}|Y=c_k) y=argckmaxP(Y=ck)j=1nP(X(j)=x(j)Y=ck)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值