RMQ区间最值,动态规划的查询方法

1. 概述

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值。这两个问题是在实际应用中经常遇到的问题,下面介绍一下解决这两种问题的比较高效的算法。当然,该问题也可以用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),这里我们暂不介绍。


2.RMQ算法

对于该问题,最容易想到的解决方案是遍历,复杂度是O(n)。但当数据量非常大且查询很频繁时,该算法无法在有效的时间内查询出正解。

本节介绍了一种比较高效的在线算法(ST算法)解决这个问题。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。


(一)首先是预处理,用动态规划(DP)解决。

设A[i]是要求区间最值的数列,F[i, j]表示从第i个数起连续2^j个数中的最大值。(DP的状态)

例如:

A数列为:3 2 4 5 6 8 1 2 9 7

F[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。同理 F[1,1] = max(3,2) = 3, F[1,2]=max(3,2,4,5) = 5,F[1,3] = max(3,2,4,5,6,8,1,2) = 8;

并且我们可以容易的看出F[i,0]就等于A[i]。(DP的初始值)

这样,DP的状态、初值都已经有了,剩下的就是状态转移方程。

我们把F[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从 i 到i + 2 ^ (j - 1) - 1为一段,i + 2 ^ (j - 1)到i + 2 ^ j - 1为一段(长度都为2 ^ (j - 1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。F[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])。

代码如下:

  1. void RMQ(int num) //预处理->O(nlogn)  
  2. {  
  3.     for(int j = 1; j < 20; ++j)  
  4.         for(int i = 1; i <= num; ++i)  
  5.             if(i + (1 << j) - 1 <= num)  
  6.             {  
  7.                 maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);  
  8.                 minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);  
  9.             }  
  10. }  
void RMQ(int num) //预处理->O(nlogn)
{
	for(int j = 1; j < 20; ++j)
		for(int i = 1; i <= num; ++i)
			if(i + (1 << j) - 1 <= num)
			{
				maxsum[i][j] = max(maxsum[i][j - 1], maxsum[i + (1 << (j - 1))][j - 1]);
				minsum[i][j] = min(minsum[i][j - 1], minsum[i + (1 << (j - 1))][j - 1]);
			}
}

这里我们需要注意的是循环的顺序,我们发现外层是j,内层所i,这是为什么呢?可以是i在外,j在内吗?


答案是不可以。因为我们需要理解这个状态转移方程的意义。

状态转移方程的含义是:先更新所有长度为F[i,0]即1个元素,然后通过2个1个元素的最值,获得所有长度为F[i,1]即2个元素的最值,然后再通过2个2个元素的最值,获得所有长度为F[i,2]即4个元素的最值,以此类推更新所有长度的最值。

而如果是i在外,j在内的话,我们更新的顺序就是F[1,0],F[1,1],F[1,2],F[1,3],表示更新从1开始1个元素,2个元素,4个元素,8个元素(A[0],A[1],....A[7])的最值,这里F[1,3] = max(max(A[0],A[1],A[2],A[3]),max(A[4],A[5],A[6],A[7]))的值,但是我们根本没有计算max(A[0],A[1],A[2],A[3])和max(A[4],A[5],A[6],A[7]),所以这样的方法肯定是错误的。


为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。



(二)然后是查询。

假如我们需要查询的区间为(i,j),那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可以重复,比如查询5,6,7,8,9,我们可以查询5678和6789)。

因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}。

举例说明,要求区间[2,8]的最大值,k = log2(8 - 2 + 1)= 2,即求max(F[2, 2],F[8 - 2 ^ 2 + 1, 2]) = max(F[2, 2],F[5, 2]);


在这里我们也需要注意一个地方,就是<<运算符和+-运算符的优先级。

比如这个表达式:5 - 1 << 2是多少?


答案是:4 * 2 * 2 = 16。所以我们要写

/*解法一:
        首先考虑对于n个数字组成的数,只删除1位的情况。
        比如176832,删除一位使得剩下的数值最小。结果是删除7而不是删除8所以可知并不总是删除最大的那个数字。
        一种可行的贪心策略是:对于n位数构成的数删除m位,每次总是删除这样的a[i]:它是第一个a[i]>a[i+1]的数,如果不存在则就删除a[n]。如何证明给贪心策略是正确的呢?
        假设始终不删除a[i],那么最终m位数就必然包含a[i]。但其实a[i]>a[i+1],所以我们完全可以删除a[i],然后让a[i+1]在a[i]最终的位置上,那么得到的m位数自然更小了。所以a[i]必定要被删除的。以此类推,贪心得证。
解法二:
        现在用RMQ来解该题目。
        因为要找n-m个数,删除m个数。所以原数的第1位到m+1位的数字中最小的那位(假设是第i位)肯定是n-m位数的第一位。(想想为什么)
        这样我们就找到了第一位a[i],接下来我们在从第i+1位数到m+2位数中找最小的那位,这个肯定是n-m位数的第二位。
        以此类推,找够n-m位即可。
          RMQ函数要做点修改。dmin[i][j]=k表示的是区间[i,i+(1<<j)-1]内最小值的下标而不是值了。
        具体看下面代码.
*/
#include "stdio.h"
#include "string.h"
#include "math.h"

#define MAX 1003
int n;
char a[MAX];
int ans[MAX];
int dmin[MAX][20];//储存i-i+(2^j)-1的最小值
int minc(int i,int j)
{
	if(a[i]<=a[j])//这里一定是<=
		return i;
	else return j;
}
void init_min()
{
	for(int i=0;i<n;i++)
		dmin[i][0]=i;
	for (int j = 1; (1<<j)<=n; ++j)
	{
		for (int i = 0; i+(1<<j)-1<n ; ++i)
		{
			dmin[i][j]=minc(dmin[i][j-1],dmin[i+(1<<(j-1))][j-1]);
		}
	}
}
int getmin(int x,int y)
{
	int k=0;
	while((1<<k+1)<=(y-x+1)) k++;
	return minc(dmin[x][k],dmin[y+1-(1<<k)][k]);
}
int main(int argc, char const *argv[])
{
	int m;
	while(scanf("%s%d",a,&m)==2)
	{
		n=strlen(a);
		int p=-1;
		init_min();
		for (int i = 1; i <= n-m; ++i)
		{
			
			p=getmin(p+1,m+i-1);
			ans[i]=a[p]-'0';

		}
		int i;
		for (i = 1; i <=n-m ; ++i)
			if(ans[i]!=0) break;
		if(i>n-m) printf("0\n"); 
		else
		{
			for (; i <= n-m; ++i)
			{
				printf("%d", ans[i]);
			}
			printf("\n");
		}

	}

	return 0;
}

成5 - (1 << 2)才是5-1 * 2 * 2 = 1。

#include "stdio.h"
#include "string.h"
#include "math.h"

#define N 1002
char num[N];
char num2[N];
int n;
int m;
int where_bigger(void)
{
	for (int i = 0; i < n-1; ++i)
	{
		if(num[i]>num[i+1])
			{
		//		printf("%c\n",num[i]);
			
			 	return i;
			 }
	}
	return n-1;
}
void translate()
{
	for (int i=0,j=0; i<=n ; ++i)
	{
		if(num[i]!=-1)
			num2[j++]=num[i];
	}
	n--;
	//printf("n=%d   num2=%s\n",n,num2);
	strcpy(num,num2);
	//printf(" num = %s\n",num);
}
void printnum()
{
	int j=0;
	for ( j = 0;num[j]=='0'; ++j)
		;
	if(j==n)
		printf("0\n");
	else
	{
		for (int i = j; i < n; ++i)
		{
				printf("%c",num[i]);
		}
		printf("\n");

	}
}
int main(int argc, char const *argv[])
{
	while(scanf("%s%d",num,&m)==2)
	{
		n=strlen(num);	
		for (int i = 0; i < m; ++i)
		{
			int k=where_bigger();
			num[k]=-1;
			translate();
		//	printf("%s\n", num);
		}
		printnum();
		memset(num,0,sizeof(num));
	}
	
	
	return 0;
}

例题Kiki likes traveling. One day she finds a magic lamp, unfortunately the genie in the lamp is not so kind. Kiki must answer a question, and then the genie will realize one of her dreams.
The question is: give you an integer, you are allowed to delete exactly m digits. The left digits will form a new integer. You should make it minimum.
You are not allowed to change the order of the digits. Now can you help Kiki to realize her dream?

Input
There are several test cases.
Each test case will contain an integer you are given (which may at most contains 1000 digits.) and the integer m (if the integer contains n digits, m will not bigger then n). The given integer will not contain leading zero.
Output
For each case, output the minimum result you can get in one line.
If the result contains leading zero, ignore it.
Sample Input
178543 4 
1000001 1
100001 2
12345 2
54321 2
Sample Output

13
1
0
123
321

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值