- 博客(1476)
- 资源 (78)
- 收藏
- 关注
原创 Sigma配置完全指南
《SIGMA配置完全指南》摘要:本文详细介绍了静态代码分析工具Black Duck Sigma的配置体系。主要内容包括:1) 配置基础与核心概念,说明Sigma默认配置与定制化需求的差异;2) 核心配置选项详解,涵盖全局设置、输出控制及环境变量;3) 配置文件实战,介绍YAML配置文件的创建与CI/CD集成;4) 高级定制,重点讲解严重性级别覆盖机制;5) 配置工作流建议,提供从初始扫描到渐进配置的最佳实践。通过灵活配置,Sigma可深度融入团队开发流程,成为专属安全分析伙伴。
2026-01-15 22:52:23
6
原创 Sigma:轻量快速的代码安全“侦察兵”
摘要:Sigma是一款轻量快速的静态代码分析工具,专为现代开发流程设计。作为Black Duck旗下的"侦察兵",它能快速扫描代码漏洞,无缝集成CI/CD流程。Sigma通过模块化"检查器"定位各类安全问题,支持自定义策略,并与Coverity形成互补组合。提供命令行和Docker两种使用方式,适合嵌入开发各环节。获取需Coverity许可证,是追求效率与安全平衡的团队理想选择。(149字)
2026-01-15 22:33:41
5
原创 API测试面试全攻略
本文系统介绍了API测试的核心知识与面试要点。首先解析API基础概念,包括定义、工作原理及4种主要类型(公共、私有、合作伙伴和复合API)。其次详细讲解HTTP方法与通信协议,比较REST、SOAP等协议的差异,并说明请求组件与设计原则。然后重点阐述API测试方法,涵盖9种测试类型(功能、安全、负载等)及无状态架构的重要性。最后提供面试实用技巧,如问题拆解和案例分析。全文为测试工程师构建了完整的API知识体系,是备战技术面试的实用指南,适用于从初级到高级的各层次测试人员。
2026-01-13 23:24:39
488
原创 30+ QA面试常见问题与应答解析
《30+QA面试常见问题与应答解析》为软件测试求职者提供了全面的面试准备指南。文章系统整理了质量保证领域的核心面试问题,涵盖基础概念(如质量保证定义、测试生命周期)、测试方法(自动化测试、探索性测试)以及不同测试类型(性能测试、无障碍测试)的解析。内容按职位角色分类,包含测试工程师通用问题和测试经理专项问题,每个问题均提供详细解答要点。特别对比了TDD与BDD、手动与自动化测试、黑盒与白盒测试等关键概念差异,并配有测试生命周期图示说明。该指南既能帮助求职者巩固专业知识,又能提升面试应对能力,适合不同经验水平
2026-01-13 23:09:54
527
原创 Katalon与CI_CD集成:让自动化测试融入持续交付流水线
摘要: Katalon Runtime Engine(KRE)实现了自动化测试与CI/CD流水线的无缝集成,支持无头模式执行和主流CI/CD工具兼容(如Jenkins、GitHub Actions等)。通过KRE,团队可获得快速反馈、质量保障和效率提升,并可选配TestCloud云端测试环境,无需维护本地设备矩阵。集成过程简单,只需配置命令行参数即可触发测试套件或集合,实现标准化、自动化的持续交付流程。(149字)
2026-01-08 23:08:49
707
原创 打通测试与管理的桥梁:Katalon Studio与Jira的集成
摘要:本文介绍了如何在Katalon Studio中配置Jira集成,实现测试与缺陷管理的无缝对接。主要内容包括:Jira集成的主要功能(提交缺陷、关联用例等);配置前的准备工作(许可证、插件安装);详细配置步骤(启用集成、认证设置、提交选项配置);以及如何链接Jira测试用例。通过这种集成,测试团队可以直接在Katalon中提交缺陷并关联Jira问题,提高测试流程效率。
2026-01-08 23:05:16
968
原创 Katalon平台的集成生态
Katalon平台构建了强大的集成生态,覆盖云端测试设备、ALM协作工具、CI/CD管道、多元测试框架等多个维度。其支持与主流云测试服务(如BrowserStack、Sauce Labs)、项目管理工具(如Jira、Azure DevOps)、CI/CD平台(如Jenkins、GitHub Actions)的无缝对接,并能整合多种测试框架结果。平台还提供测试脚本迁移功能和丰富的扩展插件,实现从测试创建到结果分析的全流程协同,显著提升测试效率与团队协作能力。
2026-01-07 22:56:57
872
原创 Katalon StudioAssist智能故障分析
Katalon Studio 10.4.0推出的AI Failure Analysis功能利用人工智能自动分析测试失败原因,将复杂堆栈信息转化为易懂语言。该功能可在HTML报告(提供详细分析)和邮件报告(提供简要摘要)中启用,帮助团队快速定位问题、优化协作。但存在处理时间较长、偶现标签异常等局限。这一智能化功能显著提升了测试效率,使工程师能更专注于解决问题而非日志排查。
2026-01-07 22:26:27
575
原创 Katalon StudioAssist Ask模式:工作区内的AI测试助手
Katalon Studio推出StudioAssist Ask模式,这是一款内置AI助手,可直接在IDE中提供测试开发支持。该功能需要企业版10.1.0+版本,并配置AI服务提供商(如OpenAI、Gemini等)。主要功能包括:即时解答测试相关问题、自动生成Web/API/移动测试脚本、解释代码逻辑、创建自定义关键字、排查问题和优化代码。用户还能附加项目文件提供上下文,获得更精准的回答。该工具显著提升了测试开发效率,将信息查找和基础编码任务时间缩短至分秒级。
2026-01-06 20:46:08
1123
原创 Katalon StudioAssist:智能化测试助手
Katalon StudioAssist是集成在Katalon Studio中的AI助手,提供两种交互模式:问答模式解答测试相关问题,代理模式通过MCP服务器执行多步骤自动化操作。它支持代码生成、解释、失败分析等功能,可连接多种AI服务提供商。使用时需注意AI可能产生错误代码,且需要Katalon Studio Enterprise许可证。该工具显著提升了测试自动化效率,降低了学习门槛。
2026-01-06 20:28:42
991
原创 Katalon Studio快速入门指南
在当今快节奏的软件开发周期中,自动化测试已成为保障产品质量、提升交付效率的关键环节。对于测试新手或希望优化流程的团队而言,选择一个功能全面且易于上手的工具至关重要。Katalon平台便是一个集成了测试创建、管理、执行与分析的一体化解决方案,其主要由Katalon Studio、Katalon TestOps和Katalon Runtime Engine三个核心组件构成。本文介绍如何在Katalon Studio中开展自动化测试的基本步骤,并初步探索TestOps与Runtime Engine的基础功能。
2026-01-05 22:28:16
1129
原创 Katalon Studio的安装
本文介绍了Katalon Studio在macOS、Windows和Linux三大操作系统上的安装方法及系统要求。主要内容包括:各平台的具体安装步骤(如macOS的.dmg安装、Windows的解压配置、Linux的OpenJDK17安装),首次启动的账户激活说明,以及在受限环境下的特殊安装方案。同时提供了Katalon Studio与Runtime Engine的系统环境要求,包括操作系统版本、硬件配置和浏览器兼容性等关键信息。安装前需确保满足最低配置要求并完成账户注册,不同版本的功能差异可参考官方文档对
2026-01-05 22:24:13
1009
原创 CI_CD Pipeline趋势:加速集成与交付
摘要 CI/CD Pipeline通过持续集成(CI)和持续交付(CD)实现软件开发流程自动化,帮助团队快速可靠地发布软件更新。核心区别在于:CI关注代码集成和测试,CD确保代码可发布,持续部署则实现全自动化发布。构建高效CI/CD的关键实践包括全面测试、系统安全防护、优先快速测试等。未来趋势将融合边缘计算、增强可观测性、普及"一切皆代码"理念,并引入AI优化流程。采用合适的工具平台,企业可以在加速交付的同时保障质量,保持市场竞争力。
2026-01-01 21:50:42
591
原创 在敏捷开发中通过DevTestOps缩短软件生命周期
摘要: DevTestOps通过整合开发、测试与运维,打破传统部门壁垒,提升软件交付效率与质量。其核心在于让测试人员早期介入需求分析、架构评审等环节,避免后期质量风险。借助自动化工具链(如JUnit、Selenium等)和CI/CD流程,实现快速反馈与质量内建。微服务架构进一步支持高频迭代,但需加强集成测试。成功实践需开发与测试协同共建:开发注重本地验证,测试前移参与设计,共享测试资产。最终通过透明化管理平台实现全链路跟踪,形成质量与速度并重的交付模式。(150字)
2026-01-01 21:49:42
503
原创 卷积神经网络(CNN)入门指南:从“看图说话”到“看懂世界”的AI进化史
卷积神经网络(CNN)入门指南:从生物学启发到AI视觉革命 本文系统介绍了CNN的工作原理和发展历程。CNN通过局部感受野、权值共享和池化三大核心技术,有效解决了传统神经网络在图像识别中的参数爆炸和位置敏感问题。文章详细解析了CNN的五层处理流程:从边缘检测到特征组合再到最终分类,并提供了完整的Python实现代码,使用PyTorch框架构建了一个手写数字识别模型。CNN的发展经历了从20世纪80年代的早期探索,到2012年AlexNet引爆深度学习革命,再到如今ResNet和Transformer融合的成
2025-12-29 22:32:31
997
原创 梯度与梯度消失:神经网络的“导航系统”故障解析
梯度下降是机器学习的核心优化方法,通过计算损失函数的梯度(导数)来调整模型参数,逐步降低误差。在神经网络中,梯度通过反向传播和链式法则逐层传递,但使用Sigmoid等激活函数时,由于导数连乘效应会导致梯度消失(靠近输入层的梯度趋近于零)。相比之下,ReLU激活函数能有效缓解这一问题。梯度消失会阻碍深层网络的训练,因此激活函数的选择对神经网络性能至关重要。
2025-12-29 22:09:40
734
原创 激活函数:神经网络的“开关”与“灵魂”
摘要: 激活函数是神经网络中的关键组件,决定神经元是否传递信号。没有激活函数,神经网络将退化为线性模型。常见激活函数包括:Sigmoid(输出0-1概率)、Tanh(-1到1输出)、ReLU(简单高效但可能"神经元死亡")、Leaky ReLU(解决死亡问题)、Softmax(多分类专用)等。选择策略建议:默认用ReLU,序列数据考虑Tanh/Sigmoid,深度网络用Leaky ReLU/ELU。激活函数的核心作用是引入非线性、控制梯度流动和实现稀疏激活。实践中需避免全用Sigmoid
2025-12-27 20:48:27
609
1
原创 从“手写代码”到“AI协创”:一位开发者的2025年度AI辅助开发革新实录
2025年AI辅助开发实践报告:开发者角色与工作范式的深刻转变。报告显示,大语言模型技术飞速迭代,开发流程全面智能化,代码生成、架构设计、技术评审等核心环节效率显著提升。开发者角色从"代码工匠"转变为"智能架构摆渡人",核心竞争力重构为问题定义、评估思维和整合视野。尽管AI带来45%的原型周期缩短等量化收益,仍需警惕技术深度消解等潜在风险。报告指出AI开发正呈现从通用到专用、从单点到全链路的五大演进趋势,强调在技术狂热中保持人文考量的重要性。未来开发者的价值将更多体现
2025-12-27 19:17:27
1041
原创 神经网络反向传播:零基础一篇搞懂
本文以教小孩认字为引子,生动解释了神经网络中反向传播的原理与实现。文章首先介绍神经网络的基本结构,包括输入层、隐藏层和输出层,以及神经元的工作原理。核心部分详细阐述了反向传播的数学机制,通过链式法则逐层计算误差梯度,并演示了权重更新的具体计算过程。针对深度网络中的梯度消失和爆炸问题,文章给出了ReLU激活函数和梯度裁剪等解决方案。最后通过Python代码实现了完整的反向传播训练流程,包括前向传播、损失计算、反向梯度计算和参数更新。全文采用生活化比喻和数学公式相结合的方式,使复杂的机器学习概念变得通俗易懂。
2025-12-25 22:45:30
886
原创 神经网络前向传播:AI的“消化系统”全解析
摘要 本文通过生动类比和数学推导,系统讲解了神经网络前向传播的核心原理。文章首先以"教孩子认猫"为例形象说明前向传播的本质,然后将神经元比作味蕾、网络比作汽车工厂流水线。重点内容包括:单层网络的计算步骤(以水果分类为例)、激活函数类型比较、多层网络实现手写数字识别的详细过程,以及权重初始化、批量归一化等关键技术。最后提供了用NumPy从零实现前向传播的代码框架,涵盖ReLU、Sigmoid、Softmax等激活函数实现。全文采用生活化比喻(如水阀、工厂流水线)配合严谨的数学公式,使复杂的
2025-12-24 22:27:07
920
原创 CSP-J教程——第二阶段第十四、十五课:高精度运算
高精度运算实现大数计算 本文介绍了高精度运算的概念和实现方法,主要包括: 高精度运算的必要性:突破C++基本数据类型的限制,解决大整数计算问题 存储方法:使用数组逆序存储大整数(低位在前) 加法实现:详细讲解高精度加法的算法思想,包括进位处理 代码实现:提供完整的高精度加法实现代码,包含输入输出和验证功能 优化方案:展示封装为BigInt类的优化版本 通过数组模拟和逐位计算,实现了无限制范围的大整数精确运算,解决了实际应用中的大数计算问题。
2025-12-20 21:28:44
834
原创 深度学习测试题与解析
深度学习基础概念精要 卷积层权重:权重数量仅取决于卷积核尺寸、输入/输出通道数,与输入图像尺寸无关。 Dropout:PyTorch中Dropout(0.3)表示训练时随机丢弃30%神经元,测试时全保留。 分类标签:监督学习中的目标输出值,与输入特征共同构成训练样本。 回归评估:均方误差(MSE)是回归任务的核心指标,惩罚大误差更严厉。 混淆矩阵:对角线元素之和反映模型正确分类的总样本量。 验证集作用:用于模型选择和超参数调优,反映模型泛化能力。 逻辑回归本质:通过sigmoid函数实现概率输出的二分类算法
2025-12-20 21:19:56
1011
原创 AI原生测试引擎:Katalon TrueTest重塑软件测试
摘要: TrueTest是一款AI原生的测试引擎,通过观察真实用户(人类和AI智能体)的交互行为自动生成测试用例,无需手动编写脚本。它能捕获生产环境中的元数据,排除敏感信息,并智能适应动态应用和频繁更新,实现"智能体感知测试"。TrueTest与Katalon平台深度集成,提供从测试生成到执行的完整工作流,包括可视化用户旅程、自动填补覆盖盲点、自维护对象库等功能。该方案显著降低测试维护成本,提升覆盖率,帮助团队应对AI时代复杂的应用测试挑战,实现高效、可持续的质量保障。
2025-12-18 22:30:18
438
原创 CSP-J教程——第二阶段第十二、十三课:排序与查找算法
本文介绍了算法基础概念与两种基本排序算法。首先讲解了算法的定义与效率分析,通过实例对比了不同算法的时间复杂度差异。重点讲解了选择排序和冒泡排序的原理与实现:选择排序通过反复查找未排序部分的最小值进行排序,时间复杂度为O(n²);冒泡排序通过相邻元素比较交换实现排序,优化后可提前终止。两种算法都简单直观但效率不高,适用于小规模数据排序。课程还涵盖了时间复杂度分析方法和算法思维培养,为后续学习更高效算法奠定基础。
2025-12-18 22:28:15
836
原创 CSP-J教程——第二阶段第十一课:函数与递归初步
本课程介绍了函数的基本概念和使用方法。主要内容包括:1) 通过生活实例(如厨房电器、快递员)解释函数概念;2) 展示函数定义语法及不同类型函数(无参数无返回值、带参数无返回值、带返回值);3) 讲解值传递机制,强调函数内修改参数不影响原始变量;4) 演示如何利用函数实现代码复用、模块化编程。课程通过大量C++代码示例(如计算圆面积、判断偶数、交换变量值等)帮助理解函数在实际编程中的应用。重点培养将复杂问题分解为函数模块的能力,提高代码可读性和维护性。
2025-12-16 22:02:22
1086
原创 CSP-J教程——第二阶段第九、十课:数组与字符串
本文介绍了数组的基本概念和操作,主要包括三部分内容:1. 数组概念讲解,通过生活比喻说明数组的特点和必要性;2. 一维数组的基本操作,包括定义、初始化、访问和遍历方法;3. 数组的经典应用,如求最值、计算平均值、统计计数等。课程通过大量C++代码示例,帮助学习者掌握数组的使用技巧,理解批量数据处理的思想,为后续算法学习打下基础。重点强调了数组索引从0开始、边界检查等注意事项,并提供了温度统计、成绩分析等实用案例。
2025-12-16 21:58:24
682
原创 CSP-J教程——第一阶段第八课:阶段性复习与测评
这篇编程课程复习资料包含三大部分:1) 知识回顾与梳理,通过思维导图系统复习变量、运算符、流程控制等核心概念;2) 基础知识测验,包含选择题、填空题和代码阅读题,全面检验学习效果;3) 编程闯关游戏,设置6个由易到难的实战关卡,涵盖欢迎程序、计算器、猜数字、成绩分析等综合应用。课程采用"知识梳理-测验巩固-实践提升"的三段式设计,通过40分钟知识回顾、60分钟测验和80分钟编程实践,帮助学生系统掌握编程基础,提升编程兴趣和成就感。
2025-12-15 22:52:22
970
原创 CSP-J教程——第一阶段——第七课:程序流程控制 - 循环结构(二)while和do-while循环
本文介绍了while和do-while循环的语法特点及适用场景。while循环先判断条件再执行,适合不确定循环次数的情况;do-while循环至少执行一次,适合菜单系统等场景。通过多个示例展示了两种循环在输入验证、游戏开发、数据统计等实际应用中的使用方法,并比较了while与for循环的异同。文章还涵盖了循环嵌套、模式输出以及break/continue控制语句等进阶内容,帮助读者掌握不同场景下的循环结构选择。
2025-12-15 22:49:27
1142
原创 概率论与数理统计 第八章 假设检验
假设检验方法摘要 假设检验是统计推断的核心方法,用于判断总体参数或分布是否符合特定假设。主要包括以下要点: 基本概念:区分原假设H0(无差异)与备择假设H1(有差异),通过检验统计量、显著性水平α和拒绝域进行判断。 正态总体检验: 均值检验:方差已知用Z检验,未知用t检验 方差检验:单个总体用χ²检验,两个总体用F检验 成对数据采用逐对比较法 非参数检验:χ²拟合检验用于判断总体分布形态,需计算观测频数与期望频数的差异。 应用步骤:建立假设→选择统计量→确定拒绝域→计算决策→结果解释。典型案例包括产品质量检
2025-12-09 22:47:38
1100
原创 概率论与数理统计 第七章 参数估计
本文介绍了参数估计的基本方法与应用。首先阐述了点估计的两种主要方法:矩估计法通过样本矩代替总体矩求解参数,最大似然估计法通过最大化似然函数确定参数。其次讨论了估计量的评选标准(无偏性、有效性、相合性)。然后详细讲解了区间估计的概念,包括正态总体均值与方差的置信区间构造方法,以及单侧置信区间的应用。最后通过典型例题展示了参数估计在实际问题中的应用,如指数分布、泊松分布等参数的估计。文章内容系统全面,涵盖了参数估计的核心理论与计算方法。
2025-12-09 22:44:44
1219
原创 概率论与数理统计第六章 样本及抽样分布
本文介绍了统计学中的核心概念与方法,主要内容包括: 随机样本:定义总体、个体及简单随机样本,强调独立同分布特性 数据可视化:详细说明直方图绘制步骤,解释样本分位数计算及箱线图的五数概括法 抽样分布:重点阐述正态总体下样本均值与方差的分布规律,包括单个和两个总体情形 重要定理:总结标准化转换、t分布构造和卡方分布等关键结论 应用实例:通过典型考题展示概率计算方法,强调统计量在实际问题中的应用 文章系统梳理了从基础概念到复杂分布的完整知识体系,为统计推断奠定了理论基础。
2025-12-08 22:03:58
1323
原创 概率论与数理统计第五章 大数定律及中心极限定理
本文介绍了概率论中的大数定律和中心极限定理两大核心理论。大数定律部分阐述了依概率收敛的概念,以及辛钦大数定律和伯努利大数定律,说明随机变量均值和频率的稳定性。中心极限定理部分包括独立同分布、李雅普诺夫和棣莫弗-拉普拉斯三种形式,揭示了大量独立随机变量和近似服从正态分布的性质。文中通过保险精算等实例展示了这些定理的实际应用价值,为统计学和风险管理提供了重要理论基础。全文以清晰的数学公式和例题解析,帮助读者理解这些关键概念及其现实意义。
2025-12-08 22:01:53
1243
原创 概率论与数理统计第四章 随机变量的数字特征
本文系统介绍了概率论中随机变量的数字特征,包括数学期望、方差、协方差和相关系数等核心概念。数学期望部分阐述了离散型和连续型随机变量的定义及计算方法,并给出典型例题;方差部分详细讲解了定义、性质及切比雪夫不等式的应用;协方差与相关系数部分重点讨论了两者的概念、性质、计算方法和相互关系,强调不相关与独立的区别;最后简要介绍了高阶矩和协方差矩阵的概念。全文通过公式推导和实例计算相结合的方式,完整呈现了随机变量数字特征的理论体系与实用方法。
2025-12-04 21:55:31
957
原创 概率论与数理统计第三章 多维随机变量及其分布
本文系统介绍了多维随机变量的基本概念及其分布特性。主要内容包括:1)二维随机变量的联合分布函数、离散型与连续型联合分布律/密度的定义与性质;2)边缘分布的计算方法,包括离散型边缘分布律和连续型边缘概率密度;3)条件分布的求解公式,并通过例题展示计算过程;4)随机变量独立性的定义与判定条件;5)两个随机变量函数的分布推导,重点讨论和分布的求解方法。文中结合具体例题,详细演示了各类分布的计算过程,并特别分析了二维正态分布的特性。通过理论推导与实例应用相结合的方式,全面阐述了多维随机变量的概率分布体系。
2025-12-04 21:50:26
721
原创 概率论与数理统计第二章 随机变量及其分布
本文系统介绍了随机变量及其分布的基本概念和主要类型。首先定义随机变量为样本空间上的实值函数,并引入分布函数及其性质(单调性、右连续性、边界性)。然后详细讨论了离散型随机变量(0-1分布、二项分布、几何分布、泊松分布)和连续型随机变量(均匀分布、指数分布、Γ分布、正态分布)的定义、性质及典型例题。最后阐述了随机变量函数的分布求解方法(公式法和分布函数法),通过实例演示了离散型和连续型随机变量函数的分布推导过程。全文涵盖了概率论中随机变量分布的核心内容,配有典型例题解析和历年考题示例。
2025-12-03 21:39:13
1003
原创 概率论与数理统计第一章 概率论的基本概念
概率论基础概念总结 本文系统介绍了概率论的核心概念,包括: 随机事件及其运算(包含、互斥、对立等关系) 概率的公理化定义与基本性质(非负性、规范性等) 两种重要概型: 古典概型(有限等可能事件) 几何概型(基于测度的概率计算) 条件概率与三大公式: 乘法定理 全概率公式 贝叶斯公式 事件独立性定义与判定标准 通过典型例题展示了各概念的实际应用,如古典概型的组合计算、条件概率的贝叶斯推理等。全文构建了完整的概率论基础理论框架,为后续学习提供了必要的知识储备。
2025-12-03 21:35:45
801
原创 线性代数第六章 二次型
本文介绍了二次型的基本概念、矩阵表示及相关性质。主要内容包括: 二次型的定义与矩阵表示:二次型可表示为xᵀAx的形式,其中A为对称矩阵,秩定义为矩阵A的秩。 标准形与规范形:通过可逆线性变换可将二次型化为标准形(对角形式)和规范形(系数为±1或0)。 可逆线性变换:x=Py(P可逆)保持二次型的秩,合同矩阵具有相同的秩和惯性指数。 正定性判定:二次型正定的充要条件是特征值全正或顺序主子式全正。 变换方法:详细介绍了正交变换法和配方法将二次型化为标准形的步骤。 几何意义与分类:二次型对应几何中的二次曲面,根据
2025-12-02 21:44:18
1613
原创 线性代数 第五章 矩阵的相似化简
本文介绍了线性代数中特征值与特征向量、相似矩阵及矩阵对角化的核心内容。首先定义特征值与特征向量,给出计算方法和性质(如特征值之和为迹、之积为行列式)。然后介绍相似矩阵的概念和性质,指出相似矩阵具有相同的特征值。最后详细讲解矩阵对角化的充要条件和步骤,特别针对实对称矩阵的正交对角化过程,包括特征向量的正交化与单位化方法。通过具体例题演示了如何求解特征值、特征向量及实现矩阵对角化。这些内容是矩阵理论的重要基础,在工程和科学计算中有广泛应用。
2025-12-02 21:35:37
1170
原创 线性代数第四章 线性方程组
本文系统介绍了线性方程组的基本概念、解的结构与求解方法。主要内容包括:1)m×n线性方程组的矩阵表示及其几何意义;2)解的判别条件(无解、唯一解、无穷多解);3)齐次与非齐次方程组的解空间结构,通解表示为特解与齐次通解之和;4)通过初等行变换求解的具体步骤;5)典型例题及历年考题分析。重点结论指出解的存在性与系数矩阵秩的关系,以及齐次方程组解空间的维数公式n-r(A)。掌握这些内容可有效解决线性方程组的各类问题。
2025-12-01 21:58:39
1093
1
原创 线性代数第三章 向量
本文系统介绍了向量组及其线性相关性的基本概念与核心理论。主要内容包括:1)n维向量定义及其线性组合、线性表示的条件判断;2)向量组线性相关性的判定方法及秩的计算;3)向量空间的基本概念、基与坐标变换;4)欧几里得空间的内积性质。重点阐述了秩在判断线性表示、等价性中的关键作用,以及通过矩阵变换求解向量组秩和极大无关组的方法。文中通过典型例题展示了相关定理的应用,为线性代数中向量理论的学习提供了系统指导。
2025-12-01 21:53:19
1546
Sigma 2026.1.0 Windows 版本
2026-01-15
Miniconda3 在 Windows 64 位系统上的最新安装程序,它提供了轻量级的 Conda 包管理器和 Python 环境管理功能,适合需要快速部署多个独立 Python 环境的用户
2025-11-18
Spring Cloud Config的Server 和Client示例项目
2025-03-17
Anaconda Windows安装版
2025-02-01
API 测试工具 - Karate
2025-01-02
Jenkins的HTTP Request插件1.14 版本
2024-12-03
JMeter Linux + Window
2024-10-21
Postman windows 64 安装版
2024-08-13
Spring Boot 3 极速搭建OAuth2认证框架示例项目
2024-08-13
JDepend4Eclipse 解压安装版
2024-08-10
Eclipse附带如下插件: 1. Jdepend 2. Java Dependency Viewer 直接解压就可以使用
2024-08-08
Java Dependency Viewer 的Eclipse 插件离线安装包
2024-08-07
支持 ATDD (Acceptance Test Driven Development) 的工具
2024-01-15
截取动态屏幕截图的工具
2023-11-23
Windows 最新版本的allure命令行工具
2023-11-21
Jenkins 2.414.1长期支持版本安装环境
2023-09-18
批量导入maven本地库目录到Nexus私有服务器的脚本
2023-06-28
基于JSP的Java Web项目的CSRF防御示例
2023-01-07
Webpack 快速介绍及入门示例的配套示例
2022-06-24
OpenSSL.rar
2022-01-05
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅