python多线程(四) 线程池的基类是 concurrent.futures 模块中的 Executor,Executor 提供了两个子类,即 ThreadPoolExecutor 和 ProcessPoolExecutor,其中 ThreadPoolExecutor 用于创建线程池,而 ProcessPoolExecutor 用于创建进程池。如果使用线程池/进程池来管理并发编程,那么只要将相应的 task 函数提交给线程池/进程池,剩下的事情就由线程池/进程池来搞定。
python多线程(三) 如果一个线程对全局变量进行了修改,将会影响到其他所有的线程对全局变量的计算操作,从而出现数据混乱,即为脏数据。生产者生产商品,然后将其放到类似队列的数据结构中,消费者不找生产者要数据,而是直接从队列中取。生产者生产商品后,会将商品添加到队列中。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。如进程、线程同步,可以理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行,B运行后将结果给A,A继续运行。
python多线程(二) 如果使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue()来完成进程间的通信,而不是multiprocessing.Queue(),否则会抛出如下异常。线程:进程和线程在使用上各有优缺点:线程执行开销小,但不利于资源的管理和保护,而进程正相反。在Python程序中,可以通过“_thread”和threading(推荐使用)这两个模块来处理线程。在Python3中,thread模块已经废弃。可以使用threading模块代替。
python多线程(一) Python提供了非常好用的多进程包multiprocessing,只需要定义一个函数,Python会完成其他所有事情。借助这个包,可以轻松完成从单进程到并发执行的转换。multiprocessing支持子进程、通信和共享数据。语法格式如下:其中target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group参数未使用,值始终为None。构造函数简单地构造了一个Process进程,Process的实例方法、Process的实例属性如下表所示。
Python 函数装饰器 装饰器(Decorators)是 Python 的一个重要部分。简单地说:他们是修改其他函数的功能的函数。他们有助于让我们的代码更简短,也更 Pythonic(Python范儿)。大多数初学者不知道在哪儿使用它们,所以我将要分享下,哪些区域里装饰器可以让你的代码更简洁。
CI修改微服务Dockerfile和pom.xml文件 import java.io.*;import java.nio.charset.StandardCharsets;import java.nio.file.Files;import java.nio.file.Path;import java.nio.file.Paths;import java.util.List;import java.util.stream.Collectors;/** * @author oscar * @date 2021/7/20 17:29 */p..
代码覆盖Jacoco使用 <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.22.2</version> ...