1091 N-自守数 (15 分) 还有 测试点2

该博客介绍了PAT编程竞赛中的一道题目——1091 N-自守数。博主分享了自己在解题过程中的经历,由于忽视了题目中的关键条件‘N<10’,导致在测试点2上出错。文章详细阐述了题目的要求,即找到一个数K,其平方乘以N后,结果的末尾与N相同。博主提供了正确的解题思路,即遍历1到9,用公式验证是否满足N-自守数的条件。
摘要由CSDN通过智能技术生成

 

写完第一感觉 我又被骗了!!

首先 测试点2 的数据是 

9

9 8 7 6 5 4 3 2 1

我犯了一个错误,就是没有看见 “注意题目保证 N<10。” 结果程序写成了 N<输入的数 导致第二个测试点错误。 所以要看题目啊,谨防被骗。(狗头~~)

因为大二到大三忙着做项目还有忙着各种考试,所以好久没写了,就今天一写,还被骗了。啊哈哈~

题目

如果某个数 K 的平方乘以 N 以后,结果的末尾几位数等于 K,那么就称这个数为“N-自守数”。例如 3×92​2​​=25392,而 25392 的末尾两位正好是 92,所以 92 是一个 3-自守数。

本题就请你编写程序判断一个给定的数字是否关于某个 N 是 N-自守数。

输入格式:

输入在第一行中给出正整数 M(≤20),随后一行给出 M 个待检测的、不超过 1000 的正整数。

输出格式:

对每个需要检测的数字,如果它是 N-自守数就在一行中输出最小的 N 和 NK​2​​ 的值,以一个空格隔开;否则输出 No。注意题目保证 N<10。

输入样例:

3
92 5 233

输出样例:

3 25392
1 25
No

 

思路:简单推导一下&

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值