递归与分治策略
1、递归的总体思想:
对于一个大规模的问题无法直接求解,可以把这个大问题划分成k个小问题,如果小问题也无法求解时,继续划分,直到问题规模足够小,很容易求出解为止。然后把求出小规模问题的解合并为一个更大规模的问题的解,至底向上逐步求出原来问题的解。
2.分治思想:
将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便于各个击破,分而治之。
废话少说看实例
例1、阶乘函数
算法:
int fac(int x){ if(x==1){ return x; }else{ return fac(x-1)*x; } }
2、递归全排列问题:n个元素进行全排列。
设计一个递归算法生成n个元素{r1,r2,…,rn}的全排列。
设R={r1,r2,…,rn}是要进行排列的n个元素,Ri=R-{ri}。
集合X中元素的全排列记为perm(X)。
(ri)perm(X)表示在全排列perm(X)的每一个排列前加上前缀得到的排列。R的全排列可归纳定义如下:
当n=1时,perm(R)=(r),其中r是集合R中唯一的元素;
当n>1时,perm(R)由(r1)perm(R1),(r2)perm(R2),…,(rn)perm(Rn)构成。
public class Order {
/**
* 递归全排序
*/
public static void main(String[] args) {
int[] a={1,2,3};
pai(a,0,a.length);
}
public static void pai(int[] a,int start ,int end){
if(start ==end){
for(int i=0;i<end;i++){ //输出语句
System.out.print(a[i]);
}
System.out.println();
}
else{
for(int j=start;j<end;j++){
int b=a[start];
a[start] =a[j]; //交换位置
a[j] =b;
pai(a,start+1,end);
b=a[start];
a[start] =a[j]; //返回到原来的样子
a[j] =b;
}
}
}
}
待续........