SPP、RFB和ASPP SPP、RFB和ASPP CNN中“金字塔”系列的结构块在深度学习诸多模型中发挥着重要的作用,个人认为有大类:“横向”并联金字塔结构(Google的Inception系列)和“纵向”特征金字塔(FPN)。前者输出的特征图融合了具有多种尺度感受野的特征;后者更侧重于是深层语义特征与浅层边缘特征的融合,这里主要学习一下前者的几个典型结构(SPP、RFB和ASPP),这几种结构或许可以作为模型即插即用的组件,对于优化模型有帮助,更...
Linux下gdb调试学习 Linux下gdb调试入门学习以test.cpp为例:#include <iostream>#include <vector>int main() { std::vector<int> as; int sum=0; for (i...
VOC数据集格式转化成COCO数据集格式 VOC数据集格式转化成COCO数据集格式一、唠叨 之前写过一篇关于coco数据集转化成VOC格式的博客COCO2VOC,最近读到CenterNet的官方代码,实现上则是将voc转化成coco数据格式,这样的操作我个人感觉很不习惯,也觉得有些奇葩,可能是每个人习惯不一样吧,我们知道有时候我们会采用labelImg标注数据,标注出来的格式就是voc,...
MNN+win10模型转换工具编译 MNN+win10模型转换工具编译MNN的说明文档叫做语雀,链接https://www.yuque.com/mnnMNN模型转换工具win10编译教程:https://www.yuque.com/mnn/cn/ko86hi但是实际操作按照教程可能不太容易通过编译,作者没有给出很多需要注意的细节。在这里给出一个详细的step by s...
mxnet的C/C++接口编译 mxnet的C/C++接口编译 Python的版本的mxnet版本用来训练、验证及测试算法效果还比较方便,但是实际部署则需要C/C++接口,因此需要编译相应接口以方便部署。一、编译环境之windows10(编译出动态库libmxnet.dll、libmxnet.lib及include头文件)。一)环境及依赖、W...
Network Slimming For YOLOv2/v3 Network Slimming For YOLOv2/v3论文:Learning Efficient Convolutional Networks through Network SlimmingGithub(官方开源):https://github.com/liuzhuang13/slimming其他实现:https://github....
Win10+vs2019下编译MNN Win10下编译MNN 执行path\MNN\schema\generate.ps1,ps1文件是PowerShell写好的脚本文件。在Windows系统中,默认情况下是不允许执行.ps1文件的。需要 执行如下命令,降低系统的安全性,允许执行脚本:set-executionpolicy -executionp...
C++之排序算法 排序算法一、准备知识 衡量算法的好坏指标,显然首先这个算法是正确的,除此之外,通常有三个方面的考虑:(1)算法在执行过程中所消耗的时间;(2)算法在执行过程中所占资源的大小,例如,占用内存空间的大小;(3)算法的易理解性、易实现性和易验证性等等。我们经常讨论的时间复杂度...
Seam carving 图像缩放 Seam carving 图像缩放一、算法理论 传统的图像缩放(opencv中的resize和crop)采用几何缩放和插值技术(线性插值和双线性插值)或者roi裁剪,这样有可能是图像失真。最近回过头去看比较经典的图像处理算法,看到《Seam Carving for Content-Aware Image Resizing》这篇...
SqueezeNet学习笔记 SqueezeNet学习笔记一、前言 《SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE》[1]主要贡献是提出了减少网络参数的轻量级网络结构:SqueezeNet,该网络在ImageNet上的精度比肩AlexNet,然而模型的参数量比AlexNet少50倍,配...
NIN(Network in Network)学习笔记 NIN(Network in Network)学习笔记一、前言 《Network In Network》是一篇比较老的文章了(2014年ICLR的一篇paper),是当时比较牛逼的一篇论文,同时在现在看来也是一篇非常经典并且影响深远的论文,后续很多创新都有这篇文章的影子。通常里程碑式的经典是不随时间而黯淡的,同样值得好好学习。 这篇文章采用较少参数就取得了Alexnet的效果,Al...
Caffe模型简单读写及修改 Caffe模型简单读写及修改 Caffe模型训练好以后,有时候我们只需要提取特征,而不需要最后的分类全连接层,只需要前面一层的特征层的参数。人脸识别模型就是典型的例子,训练的时候最后一个全连接为人的身份类别全连接,实际应用部署只需要前一层提特征,然后人脸特征比对,因此最后一层并不需要,而最...
K-SVD字典学习详细推导 K-SVD字典学习 最近学习K-SVD字典学习算法,云里雾里地看了好几篇博客,最后老实阅读了算法的原始论文《K-SVD: An Algorithm for Designing OvercompleteDictionaries for Sparse Representation》和维基百科的讲解,不得不说还是外...
目标检测训练优化Tricks:《Bag of Freebies for Training Object Detection Neural Networks》 目标检测训练Tricks论文笔记转载请注明出处:https://blog.csdn.net/ouyangfushu/article/details/88686189作者:SyGoingQQ: 244679942一、论文概述及创新点 深度学习中各种SOTA的模型除了网络架构设计的精妙之外,研究者在对模型进行训练的过程中也探索了很多有用的tricks,比如模型优化方法(SG...
C++之模板函数和模板类 模板函数和模板类一、模板函数 模板函数如果在头文件中声明则一般要在头文件实现,如果像普通函数一样在原文件中实现可能会出现错误,找不到链接什么的。正确范例:头文件中声明(.hpp文件中声明),案例如下:template <typename Ftype>cudaError_t Forward_gpu(const int count, const int chan...
Docker(一):Docker(NVIDIA-Docker)安装 Docker(NVIDIA-Docker)安装一、Docker简介 docker是一种容器技术,是直接运行在操作系统内核之上的用户空间。因此,也被称为“操作系统级虚拟化”,可以让多个独立的用户空间运行在同一台宿主机上。由于“客居”于操作系统,docker容器只能运行与底层宿主机相同或者相似的操作系统。docker容器被认为是精益技术,因为容器需要的开销有限,和传统虚拟化以及半虚拟化相比,...
Tmux学习笔记 Tmux学习笔记 Tmux真是linux终端神器,真心方便----新手都有这样的感慨!一开始看了网上很多教程一头雾水,最后还是参考老外的博客靠谱,老外对于这些东西的笔记介绍都是那么的仔细。链接:一、安装So Easy! 终端输入:sudo apt-get install tmux;安装好就可以开始玩耍了,ctrl +Alt+T打开终端输入tmux,好像很厉害的样子:看...
Vim简单使用 Vim简单使用 一个简答的程序编写工具,之前一直觉得会使用vim是多么牛逼,大神级别;其实vim是一个基础工具,算不上什么高大上,简单学一下会给工作带来很大便利。Vim是从 vi 发展出来的一个文本编辑器。代码补完、编译及错误跳转等方便编程的功能特别丰富,在程序员中被广泛使用。简单的来说, vi 是老式的字处理器,不过功能已经很齐全了,但是还是有可以进步的地方。 vim 则可以...