C++之模板函数和模板类

模板函数和模板类

一、模板函数

  模板函数如果在头文件中声明则一般要在头文件实现,如果像普通函数一样在原文件中实现可能会出现错误,找不到链接什么的。

正确范例:

头文件中声明(.hpp文件中声明),案例如下:

template <typename Ftype>

cudaError_t Forward_gpu(const int count, const int channels, const int dim,

                        const Ftype *mDeviceKernel,

                        const Ftype *bottom_data, Ftype *top_data,

                        const Ftype zero,

                        const int div_factor,

                        cudaStream_t stream);

 

源文件.cu(此处为cuda编程),源文件实现之后还需要实例化声明(在文件末尾)

// CUDA: use 512 threads per block

const int CAFFE_CUDA_NUM_THREADS = 512;

// CUDA: number of blocks for threads.

inline int CAFFE_GET_BLOCKS(const int N) {

  return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;

}

// CUDA: grid stride looping

#define CUDA_KERNEL_LOOP(i, n) \

  for (int i = blockIdx.x * blockDim.x + threadIdx.x; \

       i < (n); \

       i += blockDim.x * gridDim.x)

/******** PReLU CUDA function ********/

// CUDA kernele for forward

template <typename Ftype>

__global__ void PReLUForward(const int n, const int channels, const int dim,

    const Ftype* slope_data,

    const Ftype* in, Ftype* out,

    const Ftype zero,

    const int div_factor) {

        CUDA_KERNEL_LOOP(index, n) {

            int c = (index / dim) % channels / div_factor;

            //You do that just for the half precision,while the orginal caffe's implementation is just for float or double type

            out[index] = (in[index] > (Ftype(zero))) ? in[index] : in[index] * *(reinterpret_cast<const Ftype*>(slope_data)+c);

            //out[index] = (in[index] > 0) ? in[index] : in[index] * slope_data[c]; 

    }

}



template <typename Ftype>

cudaError_t Forward_gpu(const int count, const int channels, const int dim,

                const Ftype* mDeviceKernel,

                const Ftype* bottom_data, Ftype* top_data,

                const Ftype zero,

                const int div_factor, const cudaStream_t stream) {

    PReLUForward<<<CAFFE_GET_BLOCKS(count), CAFFE_CUDA_NUM_THREADS, 0, stream>>>

        (count, channels, dim, mDeviceKernel, bottom_data, top_data, zero, div_factor);

    cudaError_t err = cudaGetLastError();

    return err;

}



//源文件实现之后还需要这样的声明(在文件末尾)

// function instantiation

// https://courses.cs.washington.edu/courses/cse326/02wi/computing/c++-templates.html

template cudaError_t Forward_gpu<float>(const int count, const int channals, const int dim,

                const float* mDeviceKernel,

                const float* bottom_data, float* top_data,

                const float zero,

                const int div_factor,

                const cudaStream_t stream);

template cudaError_t Forward_gpu<__half>(const int count, const int channals, const int dim,

                const __half* mDeviceKernel,

                const __half* bottom_data, __half* top_data,

                const __half zero,

                const int div_factor,

                const cudaStream_t stream);

二、模板类

1、在头文件中声明与实现模板类

例如在Test.hpp中声明类并实现

template< typename T >

  class Example
  {
  public:
     void      SetValue( const T& newValue );
  private:
     T         m_value;
  };

template< typename T >
  void
  Example< T >::SetValue( const T& newValue )
  {
      m_value = newValue;
  }

2、头文件中声明,源文件中实现,但是记得要将模板类实例化,否再出现LNK2001错误。

(1)定义宏函数(参考自caffe源码实现以及其他框架)

// Instantiate a class with float and double specifications.

#define INSTANTIATE_CLASS(classname) \

  char gInstantiationGuard##classname; \

  template class classname<float>; \

  template class classname<double>  //还可以继续添加支持得类型。

(2)案例

 可参看caffe源码中模板类的实现代码,比如Blob. 这里还是举一个简单的案例

//Test.hpp中:

template< typename T >
  class Example
  {
  public:
     void      SetValue( const T& newValue );
  private:
     T         m_value;
  };
//Test.cpp中

template< typename T >
  void
  Example< T >::SetValue( const T& newValue )
  {
      m_value = newValue;
  }
INSTANTIATE_CLASS(Example)  //这一句比较关键,否则会报LNK2001错误。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值